亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Humans utilize their gaze to concentrate on essential information while perceiving and interpreting intentions in videos. Incorporating human gaze into computational algorithms can significantly enhance model performance in video understanding tasks. In this work, we address a challenging and innovative task in video understanding: predicting the actions of an agent in a video based on a partial video. We introduce the Gaze-guided Action Anticipation algorithm, which establishes a visual-semantic graph from the video input. Our method utilizes a Graph Neural Network to recognize the agent's intention and predict the action sequence to fulfill this intention. To assess the efficiency of our approach, we collect a dataset containing household activities generated in the VirtualHome environment, accompanied by human gaze data of viewing videos. Our method outperforms state-of-the-art techniques, achieving a 7\% improvement in accuracy for 18-class intention recognition. This highlights the efficiency of our method in learning important features from human gaze data.

相關內容

People use language for various purposes. Apart from sharing information, individuals may use it to express emotions or to show respect for another person. In this paper, we focus on the formality level of machine-generated translations and present FAME-MT -- a dataset consisting of 11.2 million translations between 15 European source languages and 8 European target languages classified to formal and informal classes according to target sentence formality. This dataset can be used to fine-tune machine translation models to ensure a given formality level for each European target language considered. We describe the dataset creation procedure, the analysis of the dataset's quality showing that FAME-MT is a reliable source of language register information, and we present a publicly available proof-of-concept machine translation model that uses the dataset to steer the formality level of the translation. Currently, it is the largest dataset of formality annotations, with examples expressed in 112 European language pairs. The dataset is published online: //github.com/laniqo-public/fame-mt/ .

Web applications and APIs face constant threats from malicious actors seeking to exploit vulnerabilities for illicit gains. These threats necessitate robust anomaly detection systems capable of identifying malicious API traffic efficiently despite limited and diverse datasets. This paper proposes a novel few-shot detection approach motivated by Natural Language Processing (NLP) and advanced Generative Adversarial Network (GAN)-inspired techniques. Leveraging state-of-the-art Transformer architectures, particularly RoBERTa, our method enhances the contextual understanding of API requests, leading to improved anomaly detection compared to traditional methods. We showcase the technique's versatility by demonstrating its effectiveness with both Out-of-Distribution (OOD) and Transformer-based binary classification methods on two distinct datasets: CSIC 2010 and ATRDF 2023. Our evaluations reveal consistently enhanced or, at worst, equivalent detection rates across various metrics in most vectors, highlighting the promise of our approach for improving API security.

DNA, with remarkable properties of high density, durability, and replicability, is one of the most appealing storage media. Emerging DNA storage technologies use composite DNA letters, where information is represented by probability vectors, leading to higher information density and lower synthesizing costs than regular DNA letters. However, it faces the problem of inevitable noise and information corruption. This paper explores the channel of composite DNA letters in DNA-based storage systems and introduces block codes for limited-magnitude probability errors on probability vectors. First, outer and inner bounds for limited-magnitude probability error correction codes are provided. Moreover, code constructions are proposed where the number of errors is bounded by t, the error magnitudes are bounded by l, and the probability resolution is fixed as k. These constructions focus on leveraging the properties of limited-magnitude probability errors in DNA-based storage systems, leading to improved performance in terms of complexity and redundancy. In addition, the asymptotic optimality for one of the proposed constructions is established. Finally, systematic codes based on one of the proposed constructions are presented, which enable efficient information extraction for practical implementation.

Event Stream Super-Resolution (ESR) aims to address the challenge of insufficient spatial resolution in event streams, which holds great significance for the application of event cameras in complex scenarios. Previous works for ESR often process positive and negative events in a mixed paradigm. This paradigm limits their ability to effectively model the unique characteristics of each event and mutually refine each other by considering their correlations. In this paper, we propose a bilateral event mining and complementary network (BMCNet) to fully leverage the potential of each event and capture the shared information to complement each other simultaneously. Specifically, we resort to a two-stream network to accomplish comprehensive mining of each type of events individually. To facilitate the exchange of information between two streams, we propose a bilateral information exchange (BIE) module. This module is layer-wisely embedded between two streams, enabling the effective propagation of hierarchical global information while alleviating the impact of invalid information brought by inherent characteristics of events. The experimental results demonstrate that our approach outperforms the previous state-of-the-art methods in ESR, achieving performance improvements of over 11\% on both real and synthetic datasets. Moreover, our method significantly enhances the performance of event-based downstream tasks such as object recognition and video reconstruction. Our code is available at //github.com/Lqm26/BMCNet-ESR.

This paper considers KLM-style preferential non-monotonic reasoning in the setting of propositional team semantics. We show that team-based propositional logics naturally give rise to cumulative non-monotonic entailment relations. Motivated by the non-classical interpretation of disjunction in team semantics, we give a precise characterization for preferential models for propositional dependence logic satisfying all of System P postulates. Furthermore, we show how classical entailment and dependence logic entailment can be expressed in terms of non-trivial preferential models.

We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast

Object detectors usually achieve promising results with the supervision of complete instance annotations. However, their performance is far from satisfactory with sparse instance annotations. Most existing methods for sparsely annotated object detection either re-weight the loss of hard negative samples or convert the unlabeled instances into ignored regions to reduce the interference of false negatives. We argue that these strategies are insufficient since they can at most alleviate the negative effect caused by missing annotations. In this paper, we propose a simple but effective mechanism, called Co-mining, for sparsely annotated object detection. In our Co-mining, two branches of a Siamese network predict the pseudo-label sets for each other. To enhance multi-view learning and better mine unlabeled instances, the original image and corresponding augmented image are used as the inputs of two branches of the Siamese network, respectively. Co-mining can serve as a general training mechanism applied to most of modern object detectors. Experiments are performed on MS COCO dataset with three different sparsely annotated settings using two typical frameworks: anchor-based detector RetinaNet and anchor-free detector FCOS. Experimental results show that our Co-mining with RetinaNet achieves 1.4%~2.1% improvements compared with different baselines and surpasses existing methods under the same sparsely annotated setting.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks. Recently, an upgraded version of BERT has been released with Whole Word Masking (WWM), which mitigate the drawbacks of masking partial WordPiece tokens in pre-training BERT. In this technical report, we adapt whole word masking in Chinese text, that masking the whole word instead of masking Chinese characters, which could bring another challenge in Masked Language Model (MLM) pre-training task. The model was trained on the latest Chinese Wikipedia dump. We aim to provide easy extensibility and better performance for Chinese BERT without changing any neural architecture or even hyper-parameters. The model is verified on various NLP tasks, across sentence-level to document-level, including sentiment classification (ChnSentiCorp, Sina Weibo), named entity recognition (People Daily, MSRA-NER), natural language inference (XNLI), sentence pair matching (LCQMC, BQ Corpus), and machine reading comprehension (CMRC 2018, DRCD, CAIL RC). Experimental results on these datasets show that the whole word masking could bring another significant gain. Moreover, we also examine the effectiveness of Chinese pre-trained models: BERT, ERNIE, BERT-wwm. We release the pre-trained model (both TensorFlow and PyTorch) on GitHub: //github.com/ymcui/Chinese-BERT-wwm

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司