In addition to being the eigenfunctions of the restricted Fourier operator, the angular spheroidal wave functions of the first kind of order zero and nonnegative integer characteristic exponents are the solutions of a singular self-adjoint Sturm-Liouville problem. The running time of the standard algorithm for the numerical evaluation of their Sturm-Liouville eigenvalues grows with both bandlimit and characteristic exponent. Here, we describe a new approach whose running time is bounded independent of these parameters. Although the Sturm-Liouville eigenvalues are of little interest themselves, our algorithm is a component of a fast scheme for the numerical evaluation of the prolate spheroidal wave functions developed by one of the authors. We illustrate the performance of our method with numerical experiments.
We prove upper and lower bounds on the minimal spherical dispersion, improving upon previous estimates obtained by Rote and Tichy [Spherical dispersion with an application to polygonal approximation of curves, Anz. \"Osterreich. Akad. Wiss. Math.-Natur. Kl. 132 (1995), 3--10]. In particular, we see that the inverse $N(\varepsilon,d)$ of the minimal spherical dispersion is, for fixed $\varepsilon>0$, linear in the dimension $d$ of the ambient space. We also derive upper and lower bounds on the expected dispersion for points chosen independently and uniformly at random from the Euclidean unit sphere. In terms of the corresponding inverse $\widetilde{N}(\varepsilon,d)$, our bounds are optimal with respect to the dependence on $\varepsilon$.
We couple the L1 discretization for Caputo derivative in time with spectral Galerkin method in space to devise a scheme that solves quasilinear subdiffusion equations. Both the diffusivity and the source are allowed to be nonlinear functions of the solution. We prove method's stability and convergence with spectral accuracy in space. The temporal order depends on solution's regularity in time. Further, we support our results with numerical simulations that utilize parallelism for spatial discretization. Moreover, as a side result we find asymptotic exact values of error constants along with their remainders for discretizations of Caputo derivative and fractional integrals. These constants are the smallest possible which improves the previously established results from the literature.
In this paper, we investigate the energy minimization model of the ensemble Kohn-Sham density functional theory for metallic systems, in which a pseudo-eigenvalue matrix and a general smearing approach are involved. We study the invariance and the existence of the minimizer of the energy functional. We propose an adaptive double step size strategy and the corresponding preconditioned conjugate gradient methods for solving the energy minimization model. Under some mild but reasonable assumptions, we prove the global convergence of our algorithms. Numerical experiments show that our algorithms are efficient, especially for large scale metallic systems. In particular, our algorithms produce convergent numerical approximations for some metallic systems, for which the traditional self-consistent field iterations fail to converge.
A numerical algorithm is presented to solve a benchmark problem proposed by Hemker. The algorithm incorporates asymptotic information into the design of appropriate piecewise-uniform Shishkin meshes. Moreover, different co-ordinate systems are utilized due to the different geometries and associated layer structures that are involved in this problem. Numerical results are presented to demonstrate the effectiveness of the proposed numerical algorithm.
The numerical analysis of causal fermion systems is advanced by employing differentiable programming methods. The causal action principle for weighted counting measures is introduced for general values of the integer parameters $f$ (the particle number), $n$ (the spin dimension) and $m$ (the number of spacetime points). In the case $n=1$, the causal relations are clarified geometrically in terms of causal cones. Discrete Dirac spheres are introduced as candidates for minimizers for large $m$ in the cases $n=1, f=2$ and $n=2, f=4$. We provide a thorough numerical analysis of the causal action principle for weighted counting measures for large $m$ in the cases $n=1,2$ and $f=2,3,4$. Our numerical findings corroborate that all minimizers for large $m$ are good approximations of the discrete Dirac spheres. In the example $n=1, f=3$ it is explained how numerical minimizers can be visualized by projected spacetime plots. Methods and prospects are discussed to numerically investigate settings in which hitherto no analytic candidates for minimizers are known.
The asymptotic stable region and long-time decay rate of solutions to linear homogeneous Caputo time fractional ordinary differential equations (F-ODEs) are known to be completely determined by the eigenvalues of the coefficient matrix. Very different from the exponential decay of solutions to classical ODEs, solutions of F-ODEs decay only polynomially, leading to the so-called Mittag-Leffler stability, which was already extended to semi-linear F-ODEs with small perturbations. This work is mainly devoted to the qualitative analysis of the long-time behavior of numerical solutions. By applying the singularity analysis of generating functions developed by Flajolet and Odlyzko (SIAM J. Disc. Math. 3 (1990), 216-240), we are able to prove that both $\mathcal{L}$1 scheme and strong $A$-stable fractional linear multistep methods (F-LMMs) can preserve the numerical Mittag-Leffler stability for linear homogeneous F-ODEs exactly as in the continuous case. Through an improved estimate of the discrete fractional resolvent operator, we show that strong $A$-stable F-LMMs are also Mittag-Leffler stable for semi-linear F-ODEs under small perturbations. For the numerical schemes based on $\alpha$-difference approximation to Caputo derivative, we establish the Mittag-Leffler stability for semi-linear problems by making use of properties of the Poisson transformation and the decay rate of the continuous fractional resolvent operator. Numerical experiments are presented for several typical time fractional evolutional equations, including time fractional sub-diffusion equations, fractional linear system and semi-linear F-ODEs. All the numerical results exhibit the typical long-time polynomial decay rate, which is fully consistent with our theoretical predictions.
We derive and analyze a symmetric interior penalty discontinuous Galerkin scheme for the approximation of the second-order form of the radiative transfer equation in slab geometry. Using appropriate trace lemmas, the analysis can be carried out as for more standard elliptic problems. Supporting examples show the accuracy and stability of the method also numerically. For discretization, we employ quadtree-like grids, which allow for local refinement in phase-space, and we show exemplary that adaptive methods can efficiently approximate discontinuous solutions.
A Regret Minimizing Set (RMS) is a useful concept in which a smaller subset of a database is selected while mostly preserving the best scores along every possible utility function. In this paper, we study the $k$-Regret Minimizing Sets ($k$-RMS) and Average Regret Minimizing Sets (ARMS) problems. $k$-RMS selects $r$ records from a database such that the maximum regret ratio between the $k$-th best score in the database and the best score in the selected records for any possible utility function is minimized. Meanwhile, ARMS minimizes the average of this ratio within a distribution of utility functions. Particularly, we study approximation algorithms for $k$-RMS and ARMS from the perspective of approximating the happiness ratio, which is equivalent to one minus the regret ratio. In this paper, we show that the problem of approximating the happiness of a $k$-RMS within any finite factor is NP-Hard when the dimensionality of the database is unconstrained and extend the result to an inapproximability proof for the regret. We then provide approximation algorithms for approximating the happiness of ARMS with better approximation ratios and time complexities than known algorithms for approximating the regret. We further provide dataset reduction schemes which can be used to reduce the runtime of existing heuristic based algorithms, as well as to derive polynomial-time approximation schemes for $k$-RMS when dimensionality is fixed. Finally, we provide experimental validation.
The Monte Carlo simulation (MCS) is a statistical methodology used in a large number of applications. It uses repeated random sampling to solve problems with a probability interpretation to obtain high-quality numerical results. The MCS is simple and easy to develop, implement, and apply. However, its computational cost and total runtime can be quite high as it requires many samples to obtain an accurate approximation with low variance. In this paper, a novel MCS, called the self-adaptive BAT-MCS, based on the binary-adaption-tree algorithm (BAT) and our proposed self-adaptive simulation-number algorithm is proposed to simply and effectively reduce the run time and variance of the MCS. The proposed self-adaptive BAT-MCS was applied to a simple benchmark problem to demonstrate its application in network reliability. The statistical characteristics, including the expectation, variance, and simulation number, and the time complexity of the proposed self-adaptive BAT-MCS are discussed. Furthermore, its performance is compared to that of the traditional MCS extensively on a large-scale problem.
Partial Differential Equations (PDEs) describe several problems relevant to many fields of applied sciences, and their discrete counterparts typically involve the solution of sparse linear systems. In this context, we focus on the analysis of the computational aspects related to the solution of large and sparse linear systems with HPC solvers, by considering the performances of direct and iterative solvers in terms of computational efficiency, scalability, and numerical accuracy. Our aim is to identify the main criteria to support application-domain specialists in the selection of the most suitable solvers, according to the application requirements and available resources. To this end, we discuss how the numerical solver is affected by the regular/irregular discretisation of the input domain, the discretisation of the input PDE with piecewise linear or polynomial basis functions, which generally result in a higher/lower sparsity of the coefficient matrix, and the choice of different initial conditions, which are associated with linear systems with multiple right-hand side terms. Finally, our analysis is independent of the characteristics of the underlying computational architectures, and provides a methodological approach that can be applied to different classes of PDEs or with approximation problems.