亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The tolerance of an element of a combinatorial optimization problem with respect to a given optimal solution is the maximum change, i.e., decrease or increase, of its cost, such that this solution remains optimal. The bottleneck path problem, for given an edge-capacitated graph, a source, and a target, is to find the $\max$-$\min$ value of edge capacities on paths between the source and the target. For this problem and a network with $n$ vertices and $m$ edges, there is known the Ramaswamy-Orlin-Chakravarty's algorithm to compute all tolerances in $O(m+n\log n)$ time. In this paper, for any in advance given sample of the problem with pairwise distinct edge capacities, we present a constant-time algorithm for computing both tolerances of an arbitrary edge with a preprocessing time $O\big(m \alpha(m,n)\big)$, where $\alpha(\cdot,\cdot)$ is the inverse Ackermann function. For given $k$ source-target pairs, our solution yields an $O\big((\alpha(m,n)+k)m\big)$-time algorithm to find tolerances of all edges with respect to optimal paths between the sources and targets, while the known algorithm takes $O\big(k(m+n\log n)\big)$ time to find them.

相關內容

Methods for estimating heterogeneous treatment effects (HTE) from observational data have largely focused on continuous or binary outcomes, with less attention paid to survival outcomes and almost none to settings with competing risks. In this work, we develop censoring unbiased transformations (CUTs) for survival outcomes both with and without competing risks. After converting time-to-event outcomes using these CUTs, direct application of HTE learners for continuous outcomes yields consistent estimates of heterogeneous cumulative incidence effects, total effects, and separable direct effects. Our CUTs enable application of a much larger set of state of the art HTE learners for censored outcomes than had previously been available, especially in competing risks settings. We provide generic model-free learner-specific oracle inequalities bounding the finite-sample excess risk. The oracle efficiency results depend on the oracle selector and estimated nuisance functions from all steps involved in the transformation. We demonstrate the empirical performance of the proposed methods in simulation studies.

Recent literature has advocated the use of randomized methods for accelerating the solution of various matrix problems arising throughout data science and computational science. One popular strategy for leveraging randomization is to use it as a way to reduce problem size. However, methods based on this strategy lack sufficient accuracy for some applications. Randomized preconditioning is another approach for leveraging randomization, which provides higher accuracy. The main challenge in using randomized preconditioning is the need for an underlying iterative method, thus randomized preconditioning so far have been applied almost exclusively to solving regression problems and linear systems. In this article, we show how to expand the application of randomized preconditioning to another important set of problems prevalent across data science: optimization problems with (generalized) orthogonality constraints. We demonstrate our approach, which is based on the framework of Riemannian optimization and Riemannian preconditioning, on the problem of computing the dominant canonical correlations and on the Fisher linear discriminant analysis problem. For both problems, we evaluate the effect of preconditioning on the computational costs and asymptotic convergence, and demonstrate empirically the utility of our approach.

We develop a solvable model of neural scaling laws beyond the kernel limit. Theoretical analysis of this model shows how performance scales with model size, training time, and the total amount of available data. We identify three scaling regimes corresponding to varying task difficulties: hard, easy, and super easy tasks. For easy and super-easy target functions, which lie in the reproducing kernel Hilbert space (RKHS) defined by the initial infinite-width Neural Tangent Kernel (NTK), the scaling exponents remain unchanged between feature learning and kernel regime models. For hard tasks, defined as those outside the RKHS of the initial NTK, we demonstrate both analytically and empirically that feature learning can improve scaling with training time and compute, nearly doubling the exponent for hard tasks. This leads to a different compute optimal strategy to scale parameters and training time in the feature learning regime. We support our finding that feature learning improves the scaling law for hard tasks but not for easy and super-easy tasks with experiments of nonlinear MLPs fitting functions with power-law Fourier spectra on the circle and CNNs learning vision tasks.

Combinatorial optimization problems are widespread but inherently challenging due to their discrete nature. The primary limitation of existing methods is that they can only access a small fraction of the solution space at each iteration, resulting in limited efficiency for searching the global optimal. To overcome this challenge, diverging from conventional efforts of expanding the solver's search scope, we focus on enabling information to actively propagate to the solver through heat diffusion. By transforming the target function while preserving its optima, heat diffusion facilitates information flow from distant regions to the solver, providing more efficient navigation. Utilizing heat diffusion, we propose a framework for solving general combinatorial optimization problems. The proposed methodology demonstrates superior performance across a range of the most challenging and widely encountered combinatorial optimizations. Echoing recent advancements in harnessing thermodynamics for generative artificial intelligence, our study further reveals its significant potential in advancing combinatorial optimization.

The principal component of conventional database query optimizers is a cost model that is used to estimate expected performance of query plans. The accuracy of the cost model has direct impact on the optimality of execution plans selected by the optimizer and thus, on the resulting query latency. Several common parameters of cost models in modern DBMS are related to the performance of CPU and I/O and are typically set by a database administrator upon system tuning. However these performance characteristics are not stable and therefore, a single point estimation may not suffice for all DB load regimes. In this paper, we propose an Adaptive Cost Model (ACM) which dynamically optimizes CPU- and I/O-related plan cost parameters at DB runtime. By continuously monitoring query execution statistics and the state of DB buffer cache ACM adjusts cost parameters without the need for manual intervention from a database administrator. This allows for responding to changes in the workload and system performance ensuring more optimal query execution plans. We describe the main ideas in the implementation of ACM and report on a preliminary experimental evaluation showing 20\% end-to-end latency improvement on TPC-H benchmark.

Diffusion generative models unlock new possibilities for inverse problems as they allow for the incorporation of strong empirical priors in scientific inference. Recently, diffusion models are repurposed for solving inverse problems using Gaussian approximations to conditional densities of the reverse process via Tweedie's formula to parameterise the mean, complemented with various heuristics. To address various challenges arising from these approximations, we leverage higher order information using Tweedie's formula and obtain a statistically principled approximation. We further provide a theoretical guarantee specifically for posterior sampling which can lead to a better theoretical understanding of diffusion-based conditional sampling. Finally, we illustrate the empirical effectiveness of our approach for general linear inverse problems on toy synthetic examples as well as image restoration. We show that our method (i) removes any time-dependent step-size hyperparameters required by earlier methods, (ii) brings stability and better sample quality across multiple noise levels, (iii) is the only method that works in a stable way with variance exploding (VE) forward processes as opposed to earlier works.

We introduce a novel Bayesian approach for variable selection using Gaussian process regression, which is crucial for enhancing interpretability and model regularization. Our method employs nearest neighbor Gaussian processes, serving as scalable approximations of classical Gaussian processes. Variable selection is achieved by conditioning the process mean and covariance function on a random set that represents the indices of contributing variables. A priori beliefs regarding this set control the variable selection, while reference priors are assigned to the remaining model parameters, ensuring numerical robustness in the process covariance matrix. We propose a Metropolis-Within-Gibbs algorithm for model inference. Evaluation using simulated data, a computer experiment approximation, and two real-world data sets demonstrate the effectiveness of our approach.

2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

北京阿比特科技有限公司