Combinatorial optimization problems are widespread but inherently challenging due to their discrete nature. The primary limitation of existing methods is that they can only access a small fraction of the solution space at each iteration, resulting in limited efficiency for searching the global optimal. To overcome this challenge, diverging from conventional efforts of expanding the solver's search scope, we focus on enabling information to actively propagate to the solver through heat diffusion. By transforming the target function while preserving its optima, heat diffusion facilitates information flow from distant regions to the solver, providing more efficient navigation. Utilizing heat diffusion, we propose a framework for solving general combinatorial optimization problems. The proposed methodology demonstrates superior performance across a range of the most challenging and widely encountered combinatorial optimizations. Echoing recent advancements in harnessing thermodynamics for generative artificial intelligence, our study further reveals its significant potential in advancing combinatorial optimization.
Models trained with empirical risk minimization (ERM) are prone to be biased towards spurious correlations between target labels and bias attributes, which leads to poor performance on data groups lacking spurious correlations. It is particularly challenging to address this problem when access to bias labels is not permitted. To mitigate the effect of spurious correlations without bias labels, we first introduce a novel training objective designed to robustly enhance model performance across all data samples, irrespective of the presence of spurious correlations. From this objective, we then derive a debiasing method, Disagreement Probability based Resampling for debiasing (DPR), which does not require bias labels. DPR leverages the disagreement between the target label and the prediction of a biased model to identify bias-conflicting samples-those without spurious correlations-and upsamples them according to the disagreement probability. Empirical evaluations on multiple benchmarks demonstrate that DPR achieves state-of-the-art performance over existing baselines that do not use bias labels. Furthermore, we provide a theoretical analysis that details how DPR reduces dependency on spurious correlations.
A spectre is haunting consensus protocols-the spectre of adversary majority. The literature is inconclusive, with possibilities and impossibilities running abound. Dolev and Strong in 1983 showed an early possibility for up to 99% adversaries. Yet, we have known impossibility results for adversaries above 1/2 in synchrony, and above 1/3 in partial synchrony. What gives? It is high time that we pinpoint the culprit of this confusion: the critical role of the modeling details of clients. Are the clients sleepy or always-on? Are they silent or communicating? Can validators be sleepy too? We systematize models for consensus across four dimensions (sleepy/always-on clients, silent/communicating clients, sleepy/always-on validators, and synchrony/partial-synchrony), some of which are new, and tightly characterize the achievable safety and liveness resiliences with matching possibilities and impossibilities for each of the sixteen models. To this end, we unify folklore and earlier results, and fill gaps left in the literature with new protocols and impossibility theorems.
Gaussian graphical regressions have emerged as a powerful approach for regressing the precision matrix of a Gaussian graphical model on covariates, which, unlike traditional Gaussian graphical models, can help determine how graphs are modulated by high dimensional subject-level covariates, and recover both the population-level and subject-level graphs. To fit the model, a multi-task learning approach {achieves} %has been shown to result in lower error rates compared to node-wise regressions. However, due to the high complexity and dimensionality of the Gaussian graphical regression problem, the important task of statistical inference remains unexplored. We propose a class of debiased estimators based on multi-task learners for statistical inference in Gaussian graphical regressions. We show that debiasing can be performed quickly and separately for the multi-task learners. In a key debiasing step {that estimates} %involving the estimation of the inverse covariance matrix, we propose a novel {projection technique} %diagonalization approach that dramatically reduces computational costs {in optimization} to scale only with the sample size $n$. We show that our debiased estimators enjoy a fast convergence rate and asymptotically follow a normal distribution, enabling valid statistical inference such as constructing confidence intervals and performing hypothesis testing. Simulation studies confirm the practical utility of the proposed approach, and we further apply it to analyze gene co-expression graph data from a brain cancer study, revealing meaningful biological relationships.
Errors are common in time series due to unreliable sensor measurements. Existing methods focus on univariate data but do not utilize the correlation between dimensions. Cleaning each dimension separately may lead to a less accurate result, as some errors can only be identified in the multivariate case. We also point out that the widely used minimum change principle is not always the best choice. Instead, we try to change the smallest number of data to avoid a significant change in the data distribution. In this paper, we propose MTCSC, the constraint-based method for cleaning multivariate time series. We formalize the repair problem, propose a linear-time method to employ online computing, and improve it by exploiting data trends. We also support adaptive speed constraint capturing. We analyze the properties of our proposals and compare them with SOTA methods in terms of effectiveness, efficiency versus error rates, data sizes, and applications such as classification. Experiments on real datasets show that MTCSC can have higher repair accuracy with less time consumption. Interestingly, it can be effective even when there are only weak or no correlations between the dimensions.
Explainability methods are often challenging to evaluate and compare. With a multitude of explainers available, practitioners must often compare and select explainers based on quantitative evaluation metrics. One particular differentiator between explainers is the diversity of explanations for a given dataset; i.e. whether all explanations are identical, unique and uniformly distributed, or somewhere between these two extremes. In this work, we define a complexity measure for explainers, globalness, which enables deeper understanding of the distribution of explanations produced by feature attribution and feature selection methods for a given dataset. We establish the axiomatic properties that any such measure should possess and prove that our proposed measure, Wasserstein Globalness, meets these criteria. We validate the utility of Wasserstein Globalness using image, tabular, and synthetic datasets, empirically showing that it both facilitates meaningful comparison between explainers and improves the selection process for explainability methods.
Multivariate Item Response Theory (MIRT) is sought-after widely by applied researchers looking for interpretable (sparse) explanations underlying response patterns in questionnaire data. There is, however, an unmet demand for such sparsity discovery tools in practice. Our paper develops a Bayesian platform for binary and ordinal item MIRT which requires minimal tuning and scales well on large datasets due to its parallelizable features. Bayesian methodology for MIRT models has traditionally relied on MCMC simulation, which cannot only be slow in practice, but also often renders exact sparsity recovery impossible without additional thresholding. In this work, we develop a scalable Bayesian EM algorithm to estimate sparse factor loadings from mixed continuous, binary, and ordinal item responses. We address the seemingly insurmountable problem of unknown latent factor dimensionality with tools from Bayesian nonparametrics which enable estimating the number of factors. Rotations to sparsity through parameter expansion further enhance convergence and interpretability without identifiability constraints. In our simulation study, we show that our method reliably recovers both the factor dimensionality as well as the latent structure on high-dimensional synthetic data even for small samples. We demonstrate the practical usefulness of our approach on three datasets: an educational assessment dataset, a quality-of-life measurement dataset, and a bio-behavioral dataset. All demonstrations show that our tool yields interpretable estimates, facilitating interesting discoveries that might otherwise go unnoticed under a pure confirmatory factor analysis setting.
The accurate prediction of geometric state evolution in complex systems is critical for advancing scientific domains such as quantum chemistry and material modeling. Traditional experimental and computational methods face challenges in terms of environmental constraints and computational demands, while current deep learning approaches still fall short in terms of precision and generality. In this work, we introduce the Geometric Diffusion Bridge (GDB), a novel generative modeling framework that accurately bridges initial and target geometric states. GDB leverages a probabilistic approach to evolve geometric state distributions, employing an equivariant diffusion bridge derived by a modified version of Doob's $h$-transform for connecting geometric states. This tailored diffusion process is anchored by initial and target geometric states as fixed endpoints and governed by equivariant transition kernels. Moreover, trajectory data can be seamlessly leveraged in our GDB framework by using a chain of equivariant diffusion bridges, providing a more detailed and accurate characterization of evolution dynamics. Theoretically, we conduct a thorough examination to confirm our framework's ability to preserve joint distributions of geometric states and capability to completely model the underlying dynamics inducing trajectory distributions with negligible error. Experimental evaluations across various real-world scenarios show that GDB surpasses existing state-of-the-art approaches, opening up a new pathway for accurately bridging geometric states and tackling crucial scientific challenges with improved accuracy and applicability.
Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.
Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventually available. This motivates us to propose a novel computer vision problem called: `Open World Object Detection', where a model is tasked to: 1) identify objects that have not been introduced to it as `unknown', without explicit supervision to do so, and 2) incrementally learn these identified unknown categories without forgetting previously learned classes, when the corresponding labels are progressively received. We formulate the problem, introduce a strong evaluation protocol and provide a novel solution, which we call ORE: Open World Object Detector, based on contrastive clustering and energy based unknown identification. Our experimental evaluation and ablation studies analyze the efficacy of ORE in achieving Open World objectives. As an interesting by-product, we find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-of-the-art performance, with no extra methodological effort. We hope that our work will attract further research into this newly identified, yet crucial research direction.
The amount of publicly available biomedical literature has been growing rapidly in recent years, yet question answering systems still struggle to exploit the full potential of this source of data. In a preliminary processing step, many question answering systems rely on retrieval models for identifying relevant documents and passages. This paper proposes a weighted cosine distance retrieval scheme based on neural network word embeddings. Our experiments are based on publicly available data and tasks from the BioASQ biomedical question answering challenge and demonstrate significant performance gains over a wide range of state-of-the-art models.