A number of rules for resolving majority cycles in elections have been proposed in the literature. Recently, Holliday and Pacuit (Journal of Theoretical Politics 33 (2021) 475-524) axiomatically characterized one such cycle-resolving rule, dubbed Split Cycle: in each majority cycle, discard the majority preferences with the smallest majority margin. They showed that any rule satisfying five standard axioms, plus a weakening of Arrow's Independence of Irrelevant Alternatives (IIA) called Coherent IIA, is refined by Split Cycle. In this paper, we go further and show that Split Cycle is the only rule satisfying the axioms of Holliday and Pacuit together with two additional axioms: Coherent Defeat and Positive Involvement in Defeat. Coherent Defeat states that any majority preference not occurring in a cycle is retained, while Positive Involvement in Defeat is closely related to the well-known axiom of Positive Involvement (as in J. P\'{e}rez, Social Choice and Welfare 18 (2001) 601-616). We characterize Split Cycle not only as a collective choice rule but also as a social choice correspondence, over both profiles of linear ballots and profiles of ballots allowing ties.
This note complements the upcoming paper "One-Way Ticket to Las Vegas and the Quantum Adversary" by Belovs and Yolcu, to be presented at QIP 2023. I develop the ideas behind the adversary bound - universal algorithm duality therein in a different form, using the same perspective as Barnum-Saks-Szegedy in which query algorithms are defined as sequences of feasible reduced density matrices rather than sequences of unitaries. This form may be faster to understand for a general quantum information audience: It avoids defining the "unidirectional relative $\gamma_{2}$-bound" and relating it to query algorithms explicitly. This proof is also more general because the lower bound (and universal query algorithm) apply to a class of optimal control problems rather than just query problems. That is in addition to the advantages to be discussed in Belovs-Yolcu, namely the more elementary algorithm and correctness proof that avoids phase estimation and spectral analysis, allows for limited treatment of noise, and removes another $\Theta(\log(1/\epsilon))$ factor from the runtime compared to the previous discrete-time algorithm.
We consider the problem of estimating the optimal transport map between a (fixed) source distribution $P$ and an unknown target distribution $Q$, based on samples from $Q$. The estimation of such optimal transport maps has become increasingly relevant in modern statistical applications, such as generative modeling. At present, estimation rates are only known in a few settings (e.g. when $P$ and $Q$ have densities bounded above and below and when the transport map lies in a H\"older class), which are often not reflected in practice. We present a unified methodology for obtaining rates of estimation of optimal transport maps in general function spaces. Our assumptions are significantly weaker than those appearing in the literature: we require only that the source measure $P$ satisfies a Poincar\'e inequality and that the optimal map be the gradient of a smooth convex function that lies in a space whose metric entropy can be controlled. As a special case, we recover known estimation rates for bounded densities and H\"older transport maps, but also obtain nearly sharp results in many settings not covered by prior work. For example, we provide the first statistical rates of estimation when $P$ is the normal distribution and the transport map is given by an infinite-width shallow neural network.
This paper focuses on the problem of testing the null hypothesis that the regression functions of several populations are equal under a general nonparametric homoscedastic regression model. It is well known that linear kernel regression estimators are sensitive to atypical responses. These distorted estimates will influence the test statistic constructed from them so the conclusions obtained when testing equality of several regression functions may also be affected. In recent years, the use of testing procedures based on empirical characteristic functions has shown good practical properties. For that reason, to provide more reliable inferences, we construct a test statistic that combines characteristic functions and residuals obtained from a robust smoother under the null hypothesis. The asymptotic distribution of the test statistic is studied under the null hypothesis and under root$-n$ contiguous alternatives. A Monte Carlo study is performed to compare the finite sample behaviour of the proposed test with the classical one obtained using local averages. The reported numerical experiments show the advantage of the proposed methodology over the one based on Nadaraya--Watson estimators for finite samples. An illustration to a real data set is also provided and enables to investigate the sensitivity of the $p-$value to the bandwidth selection.
Missing data can lead to inefficiencies and biases in analyses, in particular when data are missing not at random (MNAR). It is thus vital to understand and correctly identify the missing data mechanism. Recovering missing values through a follow up sample allows researchers to conduct hypothesis tests for MNAR, which are not possible when using only the original incomplete data. Investigating how properties of these tests are affected by the follow up sample design is little explored in the literature. Our results provide comprehensive insight into the properties of one such test, based on the commonly used selection model framework. We determine conditions for recovery samples that allow the test to be applied appropriately and effectively, i.e. with known Type I error rates and optimized with respect to power. We thus provide an integrated framework for testing for the presence of MNAR and designing follow up samples in an efficient cost-effective way. The performance of our methodology is evaluated through simulation studies as well as on a real data sample.
We present here a unit-log-symmetric model based on the bivariate log-symmetric distribution. It is a flexible family of distributions over the interval $(0, 1)$. We then discuss its mathematical properties such as stochastic representation, symmetry, modality, moments, quantile function, entropy and maximum likelihood estimators, paying particular attention to the special cases of unit log-normal, unit-log-Student-$t$ and unit-log-Laplace distributions. Finally, some empirical results and practical illustrations are presented.
The fractal nature of complex networks has received a great deal of research interest in the last two decades. Similarly to geometric fractals, the fractality of networks can also be defined with the so-called box-covering method. A network is called fractal if the minimum number of boxes needed to cover the entire network follows a power-law relation with the size of the boxes. The fractality of networks has been associated with various network properties throughout the years, for example, disassortativity, repulsion between hubs, long-range-repulsive correlation, and small edge betweenness centralities. However, these assertions are usually based on tailor-made network models and on a small number of real networks, hence their ubiquity is often disputed. Since fractal networks have been shown to have important properties, such as robustness against intentional attacks, it is in dire need to uncover the underlying mechanisms causing fractality. Hence, the main goal of this work is to get a better understanding of the origins of fractality in complex networks. To this end, we systematically review the previous results on the relationship between various network characteristics and fractality. Moreover, we perform a comprehensive analysis of these relations on five network models and a large number of real-world networks originating from six domains. We clarify which characteristics are universally present in fractal networks and which features are just artifacts or coincidences.
We address the problem of integrating data from multiple observational and interventional studies to eventually compute counterfactuals in structural causal models. We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm from the case of a single study to that of multiple ones. The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources. On this basis, it delivers interval approximations to counterfactual results, which collapse to points in the identifiable case. The algorithm is very general, it works on semi-Markovian models with discrete variables and can compute any counterfactual. Moreover, it automatically determines if a problem is feasible (the parameter region being nonempty), which is a necessary step not to yield incorrect results. Systematic numerical experiments show the effectiveness and accuracy of the algorithm, while hinting at the benefits of integrating heterogeneous data to get informative bounds in case of unidentifiability.
Conflicts, like many social processes, are related events that span multiple scales in time, from the instantaneous to multi-year developments, and in space, from one neighborhood to continents. Yet, there is little systematic work on connecting the multiple scales, formal treatment of causality between events, and measures of uncertainty for how events are related to one another. We develop a method for extracting related chains of events that addresses these limitations with armed conflict. Our method explicitly accounts for an adjustable spatial and temporal scale of interaction for clustering individual events from a detailed data set, the Armed Conflict Event & Location Data Project. With it, we discover a mesoscale ranging from a week to a few months and from tens to a few hundred kilometers, where long-range correlations and nontrivial dynamics relating conflict events emerge. Importantly, clusters in the mesoscale, while extracted only from conflict statistics, are identifiable with causal mechanism cited in field studies. We leverage our technique to identify zones of causal interaction around conflict hotspots that naturally incorporate uncertainties. Thus, we show how a systematic, data-driven procedure extracts social objects for study, providing a scope for scrutinizing and predicting conflict amongst other processes.
Non-Volatile Memory (NVM) can deliver higher density and lower cost per bit when compared with DRAM. Its main drawback is that it is slower than DRAM. On the other hand, DRAM has scalability problems due to its cost and energy consumption. NVM will likely coexist with DRAM in computer systems and the biggest challenge is to know which data to allocate on each type of memory. A state-of-the-art approach is AutoNUMA, in the Linux kernel. Prior work is limited to measuring AutoNUMA solely in terms of the application execution time, without understanding AutoNUMA's behavior. In this work we provide a more in-depth characterization of AutoNUMA, for instance, identifying where exactly a set of pages are allocated, while keeping track of promotion and demotion decisions performed by AutoNUMA. Our analysis shows that AutoNUMA's benefits can be modest when running graph processing applications, or graph analytics, because most pages have only one access over the entire execution time and other pages accesses have no temporal locality. We make a case for exploring application characteristics using object-level mappings between DRAM and NVM. Our preliminary experiments show that an object-level memory tiering can better capture the application behavior and reduce the execution time of graph analytics by 21% (avg) and 51% (max), when compared to AutoNUMA, while significantly reducing the number of memory accesses in NVM.
Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.