亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Oberman gave a stochastic control formulation of the problem of estimating the convex envelope of a non-convex function. Based on this, we develop a reinforcement learning scheme to approximate the convex envelope, using a variant of Q-learning for controlled optimal stopping. It shows very promising results on a standard library of test problems.

相關內容

In Bayesian analysis, the selection of a prior distribution is typically done by considering each parameter in the model. While this can be convenient, in many scenarios it may be desirable to place a prior on a summary measure of the model instead. In this work, we propose a prior on the model fit, as measured by a Bayesian coefficient of determination ($R^2)$, which then induces a prior on the individual parameters. We achieve this by placing a beta prior on $R^2$ and then deriving the induced prior on the global variance parameter for generalized linear mixed models. We derive closed-form expressions in many scenarios and present several approximation strategies when an analytic form is not possible and/or to allow for easier computation. In these situations, we suggest approximating the prior by using a generalized beta prime distribution and provide a simple default prior construction scheme. This approach is quite flexible and can be easily implemented in standard Bayesian software. Lastly, we demonstrate the performance of the method on simulated and real-world data, where the method particularly shines in high-dimensional settings, as well as modeling random effects.

Dynamic mode decomposition (DMD) has recently become a popular tool for the non-intrusive analysis of dynamical systems. Exploiting Proper Orthogonal Decomposition (POD) as a dimensionality reduction technique, DMD is able to approximate a dynamical system as a sum of spatial basis evolving linearly in time, thus enabling a better understanding of the physical phenomena and forecasting of future time instants. In this work we propose an extension of DMD to parameterized dynamical systems, focusing on the future forecasting of the output of interest in a parametric context. Initially all the snapshots -- for different parameters and different time instants -- are projected to a reduced space; then DMD, or one of its variants, is employed to approximate reduced snapshots for future time instants. Exploiting the low dimension of the reduced space the predicted reduced snapshots are then combined using regression techniques, thus enabling the possibility to approximate any untested parametric configuration in future. This paper depicts in detail the algorithmic core of this method; we also present and discuss three test cases for our algorithm: a simple dynamical system with a linear parameter dependency, a heat problem with nonlinear parameter dependency and a fluid dynamics problem with nonlinear parameter dependency.

Higher order artificial neurons whose outputs are computed by applying an activation function to a higher order multinomial function of the inputs have been considered in the past, but did not gain acceptance due to the extra parameters and computational cost. However, higher order neurons have significantly greater learning capabilities since the decision boundaries of higher order neurons can be complex surfaces instead of just hyperplanes. The boundary of a single quadratic neuron can be a general hyper-quadric surface allowing it to learn many nonlinearly separable datasets. Since quadratic forms can be represented by symmetric matrices, only $\frac{n(n+1)}{2}$ additional parameters are needed instead of $n^2$. A quadratic Logistic regression model is first presented. Solutions to the XOR problem with a single quadratic neuron are considered. The complete vectorized equations for both forward and backward propagation in feedforward networks composed of quadratic neurons are derived. A reduced parameter quadratic neural network model with just $ n $ additional parameters per neuron that provides a compromise between learning ability and computational cost is presented. Comparison on benchmark classification datasets are used to demonstrate that a final layer of quadratic neurons enables networks to achieve higher accuracy with significantly fewer hidden layer neurons. In particular this paper shows that any dataset composed of $\mathcal{C}$ bounded clusters can be separated with only a single layer of $\mathcal{C}$ quadratic neurons.

Our study demonstrates the effective use of Large Language Models (LLMs) for automating the classification of complex datasets. We specifically target proposals of Decentralized Autonomous Organizations (DAOs), as the classification of this data requires the understanding of context and, therefore, depends on human expertise, leading to high costs associated with the task. The study applies an iterative approach to specify categories and further refine them and the prompt in each iteration, which led to an accuracy rate of 95% in classifying a set of 100 proposals. With this, we demonstrate the potential of LLMs to automate data labeling tasks that depend on textual context effectively.

We introduce the calculus of neo-Peircean relations, a string diagrammatic extension of the calculus of binary relations that has the same expressivity as first order logic and comes with a complete axiomatisation. The axioms are obtained by combining two well known categorical structures: cartesian and linear bicategories.

With the recent advancement of Large Language Models (LLMs), generating functionally correct code has become less complicated for a wide array of developers. While using LLMs has sped up the functional development process, it poses a heavy risk to code security. Code generation with proper security measures using LLM is a significantly more challenging task than functional code generation. Security measures may include adding a pair of lines of code with the original code, consisting of null pointer checking or prepared statements for SQL injection prevention. Currently, available code repair LLMs generate code repair by supervised fine-tuning, where the model looks at cross-entropy loss. However, the original and repaired codes are mostly similar in functionality and syntactically, except for a few (1-2) lines, which act as security measures. This imbalance between the lines needed for security measures and the functional code enforces the supervised fine-tuned model to prioritize generating functional code without adding proper security measures, which also benefits the model by resulting in minimal loss. Therefore, in this work, for security hardening and strengthening of generated code from LLMs, we propose a reinforcement learning-based method for program-specific repair with the combination of semantic and syntactic reward mechanisms that focus heavily on adding security and functional measures in the code, respectively.

We address the problem of checking the satisfiability of a set of constrained Horn clauses (CHCs) possibly including more than one query. We propose a transformation technique that takes as input a set of CHCs, including a set of queries, and returns as output a new set of CHCs, such that the transformed CHCs are satisfiable if and only if so are the original ones, and the transformed CHCs incorporate in each new query suitable information coming from the other ones so that the CHC satisfiability algorithm is able to exploit the relationships among all queries. We show that our proposed technique is effective on a non trivial benchmark of sets of CHCs that encode many verification problems for programs manipulating algebraic data types such as lists and trees.

Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.

Graph Neural Networks (GNNs) have proven to be useful for many different practical applications. However, many existing GNN models have implicitly assumed homophily among the nodes connected in the graph, and therefore have largely overlooked the important setting of heterophily, where most connected nodes are from different classes. In this work, we propose a novel framework called CPGNN that generalizes GNNs for graphs with either homophily or heterophily. The proposed framework incorporates an interpretable compatibility matrix for modeling the heterophily or homophily level in the graph, which can be learned in an end-to-end fashion, enabling it to go beyond the assumption of strong homophily. Theoretically, we show that replacing the compatibility matrix in our framework with the identity (which represents pure homophily) reduces to GCN. Our extensive experiments demonstrate the effectiveness of our approach in more realistic and challenging experimental settings with significantly less training data compared to previous works: CPGNN variants achieve state-of-the-art results in heterophily settings with or without contextual node features, while maintaining comparable performance in homophily settings.

Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.

北京阿比特科技有限公司