亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Union-free codes and disjunctive codes are two combinatorial structures, which are used in nonadaptive group testing to find a set of $d$ defective elements among $n$ samples by carrying out the minimal number of tests $t$. It is known that union-free codes have a larger rate, whereas disjunctive codes provide a more efficient decoding algorithm. In this paper we introduce a new family of codes for nonadaptive group testing with fast decoding. The rate of these codes is larger than the rate of disjunctive codes, while the decoding algorithm has the same complexity. In addition, we derive a lower bound on the rate of new codes for the case of $d=2$ defectives, which is significantly better than the bound for disjunctive codes and almost as good as the bound for union-free codes.

相關內容

Spectral independence is a recently-developed framework for obtaining sharp bounds on the convergence time of the classical Glauber dynamics. This new framework has yielded optimal $O(n \log n)$ sampling algorithms on bounded-degree graphs for a large class of problems throughout the so-called uniqueness regime, including, for example, the problems of sampling independent sets, matchings, and Ising-model configurations. Our main contribution is to relax the bounded-degree assumption that has so far been important in establishing and applying spectral independence. Previous methods for avoiding degree bounds rely on using $L^p$-norms to analyse contraction on graphs with bounded connective constant (Sinclair, Srivastava, Yin; FOCS'13). The non-linearity of $L^p$-norms is an obstacle to applying these results to bound spectral independence. Our solution is to capture the $L^p$-analysis recursively by amortising over the subtrees of the recurrence used to analyse contraction. Our method generalises previous analyses that applied only to bounded-degree graphs. As a main application of our techniques, we consider the random graph $G(n,d/n)$, where the previously known algorithms run in time $n^{O(\log d)}$ or applied only to large $d$. We refine these algorithmic bounds significantly, and develop fast $n^{1+o(1)}$ algorithms based on Glauber dynamics that apply to all $d$, throughout the uniqueness regime.

Many areas of science make extensive use of computer simulators that implicitly encode likelihood functions of complex systems. Classical statistical methods are poorly suited for these so-called likelihood-free inference (LFI) settings, particularly outside asymptotic and low-dimensional regimes. Although new machine learning methods, such as normalizing flows, have revolutionized the sample efficiency and capacity of LFI methods, it remains an open question whether they produce confidence sets with correct conditional coverage for small sample sizes. This paper unifies classical statistics with modern machine learning to present (i) a practical procedure for the Neyman construction of confidence sets with finite-sample guarantees of nominal coverage, and (ii) diagnostics that estimate conditional coverage over the entire parameter space. We refer to our framework as likelihood-free frequentist inference (LF2I). Any method that defines a test statistic, like the likelihood ratio, can leverage the LF2I machinery to create valid confidence sets and diagnostics without costly Monte Carlo samples at fixed parameter settings. We study the power of two test statistics (ACORE and BFF), which, respectively, maximize versus integrate an odds function over the parameter space. Our paper discusses the benefits and challenges of LF2I, with a breakdown of the sources of errors in LF2I confidence sets.

In this paper we generalize Dillon's switching method to characterize the exact $c$-differential uniformity of functions constructed via this method. More precisely, we modify some PcN/APcN and other functions with known $c$-differential uniformity in a controllable number of coordinates to render more such functions. We present several applications of the method in constructing PcN and APcN functions with respect to all $c\neq 1$. As a byproduct, we generalize some result of [Y. Wu, N. Li, X. Zeng, {\em New PcN and APcN functions over finite fields}, Designs Codes Crypt. 89 (2021), 2637--2651]. Computational results rendering functions with low differential uniformity, as well as, other good cryptographic properties are sprinkled throughout the paper.

The similarity between a pair of time series, i.e., sequences of indexed values in time order, is often estimated by the dynamic time warping (DTW) distance, instead of any in the well-studied family of measures including the longest common subsequence (LCS) length and the edit distance. Although it may seem as if the DTW and the LCS(-like) measures are essentially different, we reveal that the DTW distance can be represented by the longest increasing subsequence (LIS) length of a sequence of integers, which is the LCS length between the integer sequence and itself sorted. For a given pair of time series of length $n$ such that the dissimilarity between any elements is an integer between zero and $c$, we propose an integer sequence that represents any substring-substring DTW distance as its band-substring LIS length. The length of the produced integer sequence is $O(c n^2)$, which can be translated to $O(n^2)$ for constant dissimilarity functions. To demonstrate that techniques developed under the LCS(-like) measures are directly applicable to analysis of time series via our reduction of DTW to LIS, we present time-efficient algorithms for DTW-related problems utilizing the semi-local sequence comparison technique developed for LCS-related problems.

This work develops a provably accurate fully-decentralized fast and communication-efficient alternating projected gradient descent (Dec-AltProjGD) algorithm for solving the following low-rank (LR) matrix recovery problem: recover an LR matrix from independent columnwise linear projections (LR column-wise Compressive Sensing). To our best knowledge, this work is the first attempt to develop a provably correct decentralized algorithm for any problem involving use of an alternating projected GD algorithm and one in which the constraint set to be projected to is a non-convex set.

We propose a new fast algorithm to estimate any sparse generalized linear model with convex or non-convex separable penalties. Our algorithm is able to solve problems with millions of samples and features in seconds, by relying on coordinate descent, working sets and Anderson acceleration. It handles previously unaddressed models, and is extensively shown to improve state-of-art algorithms. We provide a flexible, scikit-learn compatible package, which easily handles customized datafits and penalties.

We present faster-than-native alternatives for the full AVX512-VP2INTERSECT instruction subset using basic AVX512F instructions. These alternatives compute only one of the output masks, which is sufficient for the typical case of computing the intersection of two sorted lists of integers, or computing the size of such an intersection. While the na\"ive implementation (compare the first input vector against all rotations of the second) is slower than the native instructions, we show that by rotating both the first and second operands at the same time there is a significant saving in the total number of vector rotations, resulting in the emulations being faster than the native instructions, for all instructions in the VP2INTERSECT subset. Additionally, the emulations can be easily extended to other types of inputs (e.g. packed vectors of 16-bit integers) for which native instructions are not available.

The stochastic gradient Langevin Dynamics is one of the most fundamental algorithms to solve sampling problems and non-convex optimization appearing in several machine learning applications. Especially, its variance reduced versions have nowadays gained particular attention. In this paper, we study two variants of this kind, namely, the Stochastic Variance Reduced Gradient Langevin Dynamics and the Stochastic Recursive Gradient Langevin Dynamics. We prove their convergence to the objective distribution in terms of KL-divergence under the sole assumptions of smoothness and Log-Sobolev inequality which are weaker conditions than those used in prior works for these algorithms. With the batch size and the inner loop length set to $\sqrt{n}$, the gradient complexity to achieve an $\epsilon$-precision is $\tilde{O}((n+dn^{1/2}\epsilon^{-1})\gamma^2 L^2\alpha^{-2})$, which is an improvement from any previous analyses. We also show some essential applications of our result to non-convex optimization.

Binding operation is fundamental to many cognitive processes, such as cognitive map formation, relational reasoning, and language comprehension. In these processes, two different modalities, such as location and objects, events and their contextual cues, and words and their roles, need to be bound together, but little is known about the underlying neural mechanisms. Previous works introduced a binding model based on quadratic functions of bound pairs, followed by vector summation of multiple pairs. Based on this framework, we address following questions: Which classes of quadratic matrices are optimal for decoding relational structures? And what is the resultant accuracy? We introduce a new class of binding matrices based on a matrix representation of octonion algebra, an eight-dimensional extension of complex numbers. We show that these matrices enable a more accurate unbinding than previously known methods when a small number of pairs are present. Moreover, numerical optimization of a binding operator converges to this octonion binding. We also show that when there are a large number of bound pairs, however, a random quadratic binding performs as well as the octonion and previously-proposed binding methods. This study thus provides new insight into potential neural mechanisms of binding operations in the brain.

Contextual word representations derived from pre-trained bidirectional language models (biLMs) have recently been shown to provide significant improvements to the state of the art for a wide range of NLP tasks. However, many questions remain as to how and why these models are so effective. In this paper, we present a detailed empirical study of how the choice of neural architecture (e.g. LSTM, CNN, or self attention) influences both end task accuracy and qualitative properties of the representations that are learned. We show there is a tradeoff between speed and accuracy, but all architectures learn high quality contextual representations that outperform word embeddings for four challenging NLP tasks. Additionally, all architectures learn representations that vary with network depth, from exclusively morphological based at the word embedding layer through local syntax based in the lower contextual layers to longer range semantics such coreference at the upper layers. Together, these results suggest that unsupervised biLMs, independent of architecture, are learning much more about the structure of language than previously appreciated.

北京阿比特科技有限公司