亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sensemaking in unfamiliar domains can be challenging, demanding considerable user effort to compare different options with respect to various criteria. Prior research and our formative study found that people would benefit from reading an overview of an information space upfront, including the criteria others previously found useful. However, existing sensemaking tools struggle with the "cold-start" problem -- not only requiring significant input from previous users to generate and share these overviews, but also that such overviews may turn out to be biased and incomplete. In this work, we introduce a novel system, Selenite, which leverages LLMs as reasoning machines and knowledge retrievers to automatically produce a comprehensive overview of options and criteria to jumpstart users' sensemaking processes. Subsequently, Selenite also adapts as people use it, helping users find, read, and navigate unfamiliar information in a systematic yet personalized manner. Through three studies, we found that Selenite produced accurate and high-quality overviews reliably, significantly accelerated users' information processing, and effectively improved their overall comprehension and sensemaking experience.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 會話智能體 · Performer · state-of-the-art · Agent ·
2024 年 2 月 6 日

Personalizing conversational agents can enhance the quality of conversations and increase user engagement. However, they often lack external knowledge to appropriately tend to a user's persona. This is particularly crucial for practical applications like mental health support, nutrition planning, culturally sensitive conversations, or reducing toxic behavior in conversational agents. To enhance the relevance and comprehensiveness of personalized responses, we propose using a two-step approach that involves (1) selectively integrating user personas and (2) contextualizing the response with supplementing information from a background knowledge source. We develop K-PERM (Knowledge-guided PErsonalization with Reward Modulation), a dynamic conversational agent that combines these elements. K-PERM achieves state-of-the-art performance on the popular FoCus dataset, containing real-world personalized conversations concerning global landmarks. We show that using responses from K-PERM can improve performance in state-of-the-art LLMs (GPT 3.5) by 10.5%, highlighting the impact of K-PERM for personalizing chatbots.

In safety-critical domains like automated driving (AD), errors by the object detector may endanger pedestrians and other vulnerable road users (VRU). As common evaluation metrics are not an adequate safety indicator, recent works employ approaches to identify safety-critical VRU and back-annotate the risk to the object detector. However, those approaches do not consider the safety factor in the deep neural network (DNN) training process. Thus, state-of-the-art DNN penalizes all misdetections equally irrespective of their criticality. Subsequently, to mitigate the occurrence of critical failure cases, i.e., false negatives, a safety-aware training strategy might be required to enhance the detection performance for critical pedestrians. In this paper, we propose a novel safety-aware loss variation that leverages the estimated per-pedestrian criticality scores during training. We exploit the reachability set-based time-to-collision (TTC-RSB) metric from the motion domain along with distance information to account for the worst-case threat quantifying the criticality. Our evaluation results using RetinaNet and FCOS on the nuScenes dataset demonstrate that training the models with our safety-aware loss function mitigates the misdetection of critical pedestrians without sacrificing performance for the general case, i.e., pedestrians outside the safety-critical zone.

Clarifying questions are an integral component of modern information retrieval systems, directly impacting user satisfaction and overall system performance. Poorly formulated questions can lead to user frustration and confusion, negatively affecting the system's performance. This research addresses the urgent need to identify and leverage key features that contribute to the classification of clarifying questions, enhancing user satisfaction. To gain deeper insights into how different features influence user satisfaction, we conduct a comprehensive analysis, considering a broad spectrum of lexical, semantic, and statistical features, such as question length and sentiment polarity. Our empirical results provide three main insights into the qualities of effective query clarification: (1) specific questions are more effective than generic ones; (2) the subjectivity and emotional tone of a question play a role; and (3) shorter and more ambiguous queries benefit significantly from clarification. Based on these insights, we implement feature-integrated user satisfaction prediction using various classifiers, both traditional and neural-based, including random forest, BERT, and large language models. Our experiments show a consistent and significant improvement, particularly in traditional classifiers, with a minimum performance boost of 45\%. This study presents invaluable guidelines for refining the formulation of clarifying questions and enhancing both user satisfaction and system performance.

The notable success of large language models (LLMs) has sparked an upsurge in building language agents to complete various complex tasks. We present AMOR, an agent framework based on open-source LLMs, which reasons with external knowledge bases and adapts to specific domains through human supervision to the reasoning process. AMOR builds reasoning logic over a finite state machine (FSM) that solves problems through autonomous executions and transitions over disentangled modules. This allows humans to provide direct feedback to the individual modules, and thus naturally forms process supervision. Based on this reasoning and feedback framework, we develop AMOR through two-stage fine-tuning: warm-up and adaptation. The former fine-tunes the LLM with examples automatically constructed from various public datasets and enables AMOR to generalize across different knowledge environments, while the latter tailors AMOR to specific domains using process feedback. Extensive experiments across multiple domains demonstrate the advantage of AMOR to strong baselines, thanks to its FSM-based reasoning and process feedback mechanism.

With the rapid development of online services, recommender systems (RS) have become increasingly indispensable for mitigating information overload. Despite remarkable progress, conventional recommendation models (CRM) still have some limitations, e.g., lacking open-world knowledge, and difficulties in comprehending users' underlying preferences and motivations. Meanwhile, large language models (LLM) have shown impressive general intelligence and human-like capabilities, which mainly stem from their extensive open-world knowledge, reasoning ability, as well as their comprehension of human culture and society. Consequently, the emergence of LLM is inspiring the design of recommender systems and pointing out a promising research direction, i.e., whether we can incorporate LLM and benefit from their knowledge and capabilities to compensate for the limitations of CRM. In this paper, we conduct a comprehensive survey on this research direction from the perspective of the whole pipeline in real-world recommender systems. Specifically, we summarize existing works from two orthogonal aspects: where and how to adapt LLM to RS. For the WHERE question, we discuss the roles that LLM could play in different stages of the recommendation pipeline, i.e., feature engineering, feature encoder, scoring/ranking function, user interaction, and pipeline controller. For the HOW question, we investigate the training and inference strategies, resulting in two fine-grained taxonomy criteria, i.e., whether to tune LLM or not, and whether to involve conventional recommendation models for inference. Then, we highlight key challenges in adapting LLM to RS from three aspects, i.e., efficiency, effectiveness, and ethics. Finally, we summarize the survey and discuss the future prospects. We actively maintain a GitHub repository for papers and other related resources: //github.com/CHIANGEL/Awesome-LLM-for-RecSys/.

With Artificial Intelligence (AI) becoming ubiquitous in every application domain, the need for explanations is paramount to enhance transparency and trust among non-technical users. Despite the potential shown by Explainable AI (XAI) for enhancing understanding of complex AI systems, most XAI methods are designed for technical AI experts rather than non-technical consumers. Consequently, such explanations are overwhelmingly complex and seldom guide users in achieving their desired predicted outcomes. This paper presents ongoing research for crafting XAI systems tailored to guide users in achieving desired outcomes through improved human-AI interactions. This paper highlights the research objectives and methods, key takeaways and implications learned from user studies. It outlines open questions and challenges for enhanced human-AI collaboration, which the author aims to address in future work.

Federated recommendations (FRs), facilitating multiple local clients to collectively learn a global model without disclosing user private data, have emerged as a prevalent architecture for privacy-preserving recommendations. In conventional FRs, a dominant paradigm is to utilize discrete identities to represent users/clients and items, which are subsequently mapped to domain-specific embeddings to participate in model training. Despite considerable performance, we reveal three inherent limitations that can not be ignored in federated settings, i.e., non-transferability across domains, unavailability in cold-start settings, and potential privacy violations during federated training. To this end, we propose a transferable federated recommendation model with universal textual representations, TransFR, which delicately incorporates the general capabilities empowered by pre-trained language models and the personalized abilities by fine-tuning local private data. Specifically, it first learns domain-agnostic representations of items by exploiting pre-trained models with public textual corpora. To tailor for federated recommendation, we further introduce an efficient federated fine-tuning and a local training mechanism. This facilitates personalized local heads for each client by utilizing their private behavior data. By incorporating pre-training and fine-tuning within FRs, it greatly improves the adaptation efficiency transferring to a new domain and the generalization capacity to address cold-start issues. Through extensive experiments on several datasets, we demonstrate that our TransFR model surpasses several state-of-the-art FRs in terms of accuracy, transferability, and privacy.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Music streaming services heavily rely on recommender systems to improve their users' experience, by helping them navigate through a large musical catalog and discover new songs, albums or artists. However, recommending relevant and personalized content to new users, with few to no interactions with the catalog, is challenging. This is commonly referred to as the user cold start problem. In this applied paper, we present the system recently deployed on the music streaming service Deezer to address this problem. The solution leverages a semi-personalized recommendation strategy, based on a deep neural network architecture and on a clustering of users from heterogeneous sources of information. We extensively show the practical impact of this system and its effectiveness at predicting the future musical preferences of cold start users on Deezer, through both offline and online large-scale experiments. Besides, we publicly release our code as well as anonymized usage data from our experiments. We hope that this release of industrial resources will benefit future research on user cold start recommendation.

In many real-world network datasets such as co-authorship, co-citation, email communication, etc., relationships are complex and go beyond pairwise. Hypergraphs provide a flexible and natural modeling tool to model such complex relationships. The obvious existence of such complex relationships in many real-world networks naturaly motivates the problem of learning with hypergraphs. A popular learning paradigm is hypergraph-based semi-supervised learning (SSL) where the goal is to assign labels to initially unlabeled vertices in a hypergraph. Motivated by the fact that a graph convolutional network (GCN) has been effective for graph-based SSL, we propose HyperGCN, a novel GCN for SSL on attributed hypergraphs. Additionally, we show how HyperGCN can be used as a learning-based approach for combinatorial optimisation on NP-hard hypergraph problems. We demonstrate HyperGCN's effectiveness through detailed experimentation on real-world hypergraphs.

北京阿比特科技有限公司