Composed Image Retrieval (CIR) involves searching for target images based on an image-text pair query. While current methods treat this as a query-target matching problem, we argue that CIR triplets contain additional associations beyond this primary relation. In our paper, we identify two new relations within triplets, treating each triplet as a graph node. Firstly, we introduce the concept of text-bridged image alignment, where the query text serves as a bridge between the query image and the target image. We propose a hinge-based cross-attention mechanism to incorporate this relation into network learning. Secondly, we explore complementary text reasoning, considering CIR as a form of cross-modal retrieval where two images compose to reason about complementary text. To integrate these perspectives effectively, we design a twin attention-based compositor. By combining these complementary associations with the explicit query pair-target image relation, we establish a comprehensive set of constraints for CIR. Our framework, CaLa (Complementary Association Learning for Augmenting Composed Image Retrieval), leverages these insights. We evaluate CaLa on CIRR and FashionIQ benchmarks with multiple backbones, demonstrating its superiority in composed image retrieval.
Model training requires significantly more memory, compared with inference. Parameter efficient fine-tuning (PEFT) methods provide a means of adapting large models to downstream tasks using less memory. However, existing methods such as adapters, prompt tuning or low-rank adaptation (LoRA) either introduce latency overhead at inference time or achieve subpar downstream performance compared with full fine-tuning. In this work we propose Random Subspace Adaptation (ROSA), a method that outperforms previous PEFT methods by a significant margin, while maintaining a zero latency overhead during inference time. In contrast to previous methods, ROSA is able to adapt subspaces of arbitrarily large dimension, better approximating full-finetuning. We demonstrate both theoretically and experimentally that this makes ROSA strictly more expressive than LoRA, without consuming additional memory during runtime. As PEFT methods are especially useful in the natural language processing domain, where models operate on scales that make full fine-tuning very expensive, we evaluate ROSA in two common NLP scenarios: natural language generation (NLG) and natural language understanding (NLU) with GPT-2 and RoBERTa, respectively. We show that on almost every GLUE task ROSA outperforms LoRA by a significant margin, while also outperforming LoRA on NLG tasks. Our code is available at //github.com/rosa-paper/rosa
The recent Segment Anything Model (SAM) is a significant advancement in natural image segmentation, exhibiting potent zero-shot performance suitable for various downstream image segmentation tasks. However, directly utilizing the pretrained SAM for Infrared Small Target Detection (IRSTD) task falls short in achieving satisfying performance due to a notable domain gap between natural and infrared images. Unlike a visible light camera, a thermal imager reveals an object's temperature distribution by capturing infrared radiation. Small targets often show a subtle temperature transition at the object's boundaries. To address this issue, we propose the IRSAM model for IRSTD, which improves SAM's encoder-decoder architecture to learn better feature representation of infrared small objects. Specifically, we design a Perona-Malik diffusion (PMD)-based block and incorporate it into multiple levels of SAM's encoder to help it capture essential structural features while suppressing noise. Additionally, we devise a Granularity-Aware Decoder (GAD) to fuse the multi-granularity feature from the encoder to capture structural information that may be lost in long-distance modeling. Extensive experiments on the public datasets, including NUAA-SIRST, NUDT-SIRST, and IRSTD-1K, validate the design choice of IRSAM and its significant superiority over representative state-of-the-art methods. The source code are available at: github.com/IPIC-Lab/IRSAM.
In real-world scenarios, image impairments often manifest as composite degradations, presenting a complex interplay of elements such as low light, haze, rain, and snow. Despite this reality, existing restoration methods typically target isolated degradation types, thereby falling short in environments where multiple degrading factors coexist. To bridge this gap, our study proposes a versatile imaging model that consolidates four physical corruption paradigms to accurately represent complex, composite degradation scenarios. In this context, we propose OneRestore, a novel transformer-based framework designed for adaptive, controllable scene restoration. The proposed framework leverages a unique cross-attention mechanism, merging degraded scene descriptors with image features, allowing for nuanced restoration. Our model allows versatile input scene descriptors, ranging from manual text embeddings to automatic extractions based on visual attributes. Our methodology is further enhanced through a composite degradation restoration loss, using extra degraded images as negative samples to fortify model constraints. Comparative results on synthetic and real-world datasets demonstrate OneRestore as a superior solution, significantly advancing the state-of-the-art in addressing complex, composite degradations.
We present RodinHD, which can generate high-fidelity 3D avatars from a portrait image. Existing methods fail to capture intricate details such as hairstyles which we tackle in this paper. We first identify an overlooked problem of catastrophic forgetting that arises when fitting triplanes sequentially on many avatars, caused by the MLP decoder sharing scheme. To overcome this issue, we raise a novel data scheduling strategy and a weight consolidation regularization term, which improves the decoder's capability of rendering sharper details. Additionally, we optimize the guiding effect of the portrait image by computing a finer-grained hierarchical representation that captures rich 2D texture cues, and injecting them to the 3D diffusion model at multiple layers via cross-attention. When trained on 46K avatars with a noise schedule optimized for triplanes, the resulting model can generate 3D avatars with notably better details than previous methods and can generalize to in-the-wild portrait input.
Personalized text-to-image generation models enable users to create images that depict their individual possessions in diverse scenes, finding applications in various domains. To achieve the personalization capability, existing methods rely on finetuning a text-to-image foundation model on a user's custom dataset, which can be non-trivial for general users, resource-intensive, and time-consuming. Despite attempts to develop finetuning-free methods, their generation quality is much lower compared to their finetuning counterparts. In this paper, we propose Joint-Image Diffusion (\jedi), an effective technique for learning a finetuning-free personalization model. Our key idea is to learn the joint distribution of multiple related text-image pairs that share a common subject. To facilitate learning, we propose a scalable synthetic dataset generation technique. Once trained, our model enables fast and easy personalization at test time by simply using reference images as input during the sampling process. Our approach does not require any expensive optimization process or additional modules and can faithfully preserve the identity represented by any number of reference images. Experimental results show that our model achieves state-of-the-art generation quality, both quantitatively and qualitatively, significantly outperforming both the prior finetuning-based and finetuning-free personalization baselines.
Transformers have exhibited promising performance in computer vision tasks including image super-resolution (SR). However, popular transformer-based SR methods often employ window self-attention with quadratic computational complexity to window sizes, resulting in fixed small windows with limited receptive fields. In this paper, we present a general strategy to convert transformer-based SR networks to hierarchical transformers (HiT-SR), boosting SR performance with multi-scale features while maintaining an efficient design. Specifically, we first replace the commonly used fixed small windows with expanding hierarchical windows to aggregate features at different scales and establish long-range dependencies. Considering the intensive computation required for large windows, we further design a spatial-channel correlation method with linear complexity to window sizes, efficiently gathering spatial and channel information from hierarchical windows. Extensive experiments verify the effectiveness and efficiency of our HiT-SR, and our improved versions of SwinIR-Light, SwinIR-NG, and SRFormer-Light yield state-of-the-art SR results with fewer parameters, FLOPs, and faster speeds ($\sim7\times$).
Multicasting is a vital information dissemination technique in Software-Defined Networking (SDN). With SDN, a multicast service can incorporate network functions implemented at different nodes, which is referred to as software-defined multicast. Emerging ubiquitous wireless networks for 5G and Beyond (B5G) inherently support multicast. However, the broadcast nature of wireless channels, especially in dense deployments, leads to neighborhood interference as a primary system degradation factor, which introduces a new challenge for software-defined multicast in wireless mesh networks. To tackle this, this paper introduces an innovative approach, based on the idea of minimizing both the total length cost of the multicast tree and the interference at the same time. Accordingly, a novel bicriteria optimization problem is formulated--\emph{Minimum Interference Steiner Tree (MIST)}, which is the edge-weighted variant of the vertex-weighted secluded Steiner tree problem \cite{chechik2013secluded}. To solve the bicriteria problem, instead of resorting to heuristics, this paper employs an innovative approach that is an approximate algorithm for MIST but with guaranteed performance. Specifically, the approach exploits the monotone submodularity property of the interference metric and identifies Pareto optimal solutions for MIST, then converts the problem into the submodular minimization under Steiner tree constraints, and designs a two-stage relaxation algorithm. Simulation results demonstrate and validate the performance of the proposed algorithm.
We present GSD, a diffusion model approach based on Gaussian Splatting (GS) representation for 3D object reconstruction from a single view. Prior works suffer from inconsistent 3D geometry or mediocre rendering quality due to improper representations. We take a step towards resolving these shortcomings by utilizing the recent state-of-the-art 3D explicit representation, Gaussian Splatting, and an unconditional diffusion model. This model learns to generate 3D objects represented by sets of GS ellipsoids. With these strong generative 3D priors, though learning unconditionally, the diffusion model is ready for view-guided reconstruction without further model fine-tuning. This is achieved by propagating fine-grained 2D features through the efficient yet flexible splatting function and the guided denoising sampling process. In addition, a 2D diffusion model is further employed to enhance rendering fidelity, and improve reconstructed GS quality by polishing and re-using the rendered images. The final reconstructed objects explicitly come with high-quality 3D structure and texture, and can be efficiently rendered in arbitrary views. Experiments on the challenging real-world CO3D dataset demonstrate the superiority of our approach.
Entity Linking (EL) models are well-trained at mapping mentions to their corresponding entities according to a given context. However, EL models struggle to disambiguate long-tail entities due to their limited training data. Meanwhile, large language models (LLMs) are more robust at interpreting uncommon mentions. Yet, due to a lack of specialized training, LLMs suffer at generating correct entity IDs. Furthermore, training an LLM to perform EL is cost-intensive. Building upon these insights, we introduce LLM-Augmented Entity Linking LLMAEL, a plug-and-play approach to enhance entity linking through LLM data augmentation. We leverage LLMs as knowledgeable context augmenters, generating mention-centered descriptions as additional input, while preserving traditional EL models for task specific processing. Experiments on 6 standard datasets show that the vanilla LLMAEL outperforms baseline EL models in most cases, while the fine-tuned LLMAEL set the new state-of-the-art results across all 6 benchmarks.
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.