亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Data-driven building energy prediction is an integral part of the process for measurement and verification, building benchmarking, and building-to-grid interaction. The ASHRAE Great Energy Predictor III (GEPIII) machine learning competition used an extensive meter data set to crowdsource the most accurate machine learning workflow for whole building energy prediction. A significant component of the winning solutions was the pre-processing phase to remove anomalous training data. Contemporary pre-processing methods focus on filtering statistical threshold values or deep learning methods requiring training data and multiple hyper-parameters. A recent method named ALDI (Automated Load profile Discord Identification) managed to identify these discords using matrix profile, but the technique still requires user-defined parameters. We develop ALDI++, a method based on the previous work that bypasses user-defined parameters and takes advantage of discord similarity. We evaluate ALDI++ against a statistical threshold, variational auto-encoder, and the original ALDI as baselines in classifying discords and energy forecasting scenarios. Our results demonstrate that while the classification performance improvement over the original method is marginal, ALDI++ helps achieve the best forecasting error improving 6% over the winning's team approach with six times less computation time.

相關內容

Scenario-based probabilistic forecasts have become vital for decision-makers in handling intermittent renewable energies. This paper presents a recent promising deep learning generative approach called denoising diffusion probabilistic models. It is a class of latent variable models which have recently demonstrated impressive results in the computer vision community. However, to our knowledge, there has yet to be a demonstration that they can generate high-quality samples of load, PV, or wind power time series, crucial elements to face the new challenges in power systems applications. Thus, we propose the first implementation of this model for energy forecasting using the open data of the Global Energy Forecasting Competition 2014. The results demonstrate this approach is competitive with other state-of-the-art deep learning generative models, including generative adversarial networks, variational autoencoders, and normalizing flows.

How can we segment varying numbers of objects where each specific object represents its own separate class? To make the problem even more realistic, how can we add and delete classes on the fly without retraining? This is the case of robotic applications where no datasets of the objects exist or application that includes thousands of objects (E.g., in logistics) where it is impossible to train a single model to learn all of the objects. Most current research on object segmentation for robotic grasping focuses on class-level object segmentation (E.g., box, cup, bottle), closed sets (specific objects of a dataset; for example, YCB dataset), or deep learning-based template matching. In this work, we are interested in open sets where the number of classes is unknown, varying, and without pre-knowledge about the objects' types. We consider each specific object as its own separate class. Our goal is to develop a zero-shot object detector that requires no training and can add any object as a class just by capturing a few images of the object. Our main idea is to break the segmentation pipelines into two steps by combining unseen object segmentation networks cascaded by zero-shot classifiers. We evaluate our zero-shot object detector on unseen datasets and compare it to a trained Mask R-CNN on those datasets. The results show that the performance varies from practical to unsuitable depending on the environment setup and the objects being handled. The code is available in our DoUnseen library repository.

Spatially correlated data with an excess of zeros, usually referred to as zero-inflated spatial data, arise in many disciplines. Examples include count data, for instance, abundance (or lack thereof) of animal species and disease counts, as well as semi-continuous data like observed precipitation. Spatial two-part models are a flexible class of models for such data. Fitting two-part models can be computationally expensive for large data due to high-dimensional dependent latent variables, costly matrix operations, and slow mixing Markov chains. We describe a flexible, computationally efficient approach for modeling large zero-inflated spatial data using the projection-based intrinsic conditional autoregression (PICAR) framework. We study our approach, which we call PICAR-Z, through extensive simulation studies and two environmental data sets. Our results suggest that PICAR-Z provides accurate predictions while remaining computationally efficient. An important goal of our work is to allow researchers who are not experts in computation to easily build computationally efficient extensions to zero-inflated spatial models; this also allows for a more thorough exploration of modeling choices in two-part models than was previously possible. We show that PICAR-Z is easy to implement and extend in popular probabilistic programming languages such as nimble and stan.

In psychiatric diagnosis, a contemporary data-driven, manual-based method for mental disorders classification is the most popular technique; however, it has several inevitable flaws. Using the three-way decision as a framework, we propose a unified model that stands for clinicians' subjective approach (CSA) analysis consisting of three parts: quantitative analysis, quantitative analysis, and evaluation-based analysis. A ranking list and a set of numerical weights based on illness magnitude levels according to the clinician's greatest degree of assumptions are the findings of the qualitative and quantitative investigation. We further create a comparative classification of illnesses into three groups with varying important levels; a three-way evaluation-based model is utilized in this study for the aim of understanding and portraying these results in a more clear way. This proposed method might be integrated with the manual-based process as a complementary tool to improve precision while diagnosing mental disorders

In recent years, deep learning has been widely used in SAR ATR and achieved excellent performance on the MSTAR dataset. However, due to constrained imaging conditions, MSTAR has data biases such as background correlation, i.e., background clutter properties have a spurious correlation with target classes. Deep learning can overfit clutter to reduce training errors. Therefore, the degree of overfitting for clutter reflects the non-causality of deep learning in SAR ATR. Existing methods only qualitatively analyze this phenomenon. In this paper, we quantify the contributions of different regions to target recognition based on the Shapley value. The Shapley value of clutter measures the degree of overfitting. Moreover, we explain how data bias and model bias contribute to non-causality. Concisely, data bias leads to comparable signal-to-clutter ratios and clutter textures in training and test sets. And various model structures have different degrees of overfitting for these biases. The experimental results of various models under standard operating conditions on the MSTAR dataset support our conclusions. Our code is available at //github.com/waterdisappear/Data-Bias-in-MSTAR.

The idea to generate synthetic data as a tool for broadening access to sensitive microdata has been proposed for the first time three decades ago. While first applications of the idea emerged around the turn of the century, the approach really gained momentum over the last ten years, stimulated at least in parts by some recent developments in computer science. We consider the upcoming 30th jubilee of Rubin's seminal paper on synthetic data (Rubin, 1993) as an opportunity to look back at the historical developments, but also to offer a review of the diverse approaches and methodological underpinnings proposed over the years. We will also discuss the various strategies that have been suggested to measure the utility and remaining risk of disclosure of the generated data.

We study the problem of chasing positive bodies in $\ell_1$: given a sequence of bodies $K_{t}=\{x^{t}\in\mathbb{R}_{+}^{n}\mid C^{t}x^{t}\geq 1,P^{t}x^{t}\leq 1\}$ revealed online, where $C^{t}$ and $P^{t}$ are nonnegative matrices, the goal is to (approximately) maintain a point $x_t \in K_t$ such that $\sum_t \|x_t - x_{t-1}\|_1$ is minimized. This captures the fully-dynamic low-recourse variant of any problem that can be expressed as a mixed packing-covering linear program and thus also the fractional version of many central problems in dynamic algorithms such as set cover, load balancing, hyperedge orientation, minimum spanning tree, and matching. We give an $O(\log d)$-competitive algorithm for this problem, where $d$ is the maximum row sparsity of any matrix $C^t$. This bypasses and improves exponentially over the lower bound of $\sqrt{n}$ known for general convex bodies. Our algorithm is based on iterated information projections, and, in contrast to general convex body chasing algorithms, is entirely memoryless. We also show how to round our solution dynamically to obtain the first fully dynamic algorithms with competitive recourse for all the stated problems above; i.e. their recourse is less than the recourse of every other algorithm on every update sequence, up to polylogarithmic factors. This is a significantly stronger notion than the notion of absolute recourse in the dynamic algorithms literature.

Annotation and labeling of images are some of the biggest challenges in applying deep learning to medical data. Current processes are time and cost-intensive and, therefore, a limiting factor for the wide adoption of the technology. Additionally validating that measured performance improvements are significant is important to select the best model. In this paper, we demonstrate a method for creating segmentations, a necessary part of a data cleaning for ultrasound imaging machine learning pipelines. We propose a four-step method to leverage automatically generated training data and fast human visual checks to improve model accuracy while keeping the time/effort and cost low. We also showcase running experiments multiple times to allow the usage of statistical analysis. Poor quality automated ground truth data and quick visual inspections efficiently train an initial base model, which is refined using a small set of more expensive human-generated ground truth data. The method is demonstrated on a cardiac ultrasound segmentation task, removing background data, including static PHI. Significance is shown by running the experiments multiple times and using the student's t-test on the performance distributions. The initial segmentation accuracy of a simple thresholding algorithm of 92% was improved to 98%. The performance of models trained on complicated algorithms can be matched or beaten by pre-training with the poorer performing algorithms and a small quantity of high-quality data. The introduction of statistic significance analysis for deep learning models helps to validate the performance improvements measured. The method offers a cost-effective and fast approach to achieving high-accuracy models while minimizing the cost and effort of acquiring high-quality training data.

"Egyptian Ratscrew" (ERS) is a modern American card game enjoyed by millions of players worldwide. A game of ERS is won by collecting all of the cards in the deck. Typically this game is won by the player with the fastest reflexes, since the most common strategy for collecting cards is being the first to slap the pile in the center whenever legal combinations of cards are placed down. Most players assume that the dominant strategy is to develop a faster reaction time than your opponents, and no academic inquiry has been levied against this assumption. This thesis investigates the hypothesis that a "risk slapping" strategist who relies on practical economic decision making will win an overwhelming majority of games against players who rely on quick reflexes alone. It is theorized that this can be done by exploiting the "burn rule," a penalty that is too low-cost to effectively dissuade players from slapping illegally when it benefits them. Using the Ruby programming language, we construct an Egyptian Ratscrew simulator from scratch. Our model allows us to simulate the behavior of 8 strategically unique players within easily adjustable parameters including simulation type, player count, and burn amount. We simulate 100k iterations of 67 different ERS games, totaling 6.7 million games of ERS, and use win percentage data in order to determine which strategies are dominant under each set of parameters. We then confirm our hypothesis that risk slapping is a dominant strategy, discover that there is no strictly dominant approach to risk slapping, and elucidate a deeper understanding of different ERS mechanics such as the burn rule. Finally, we assess the implications of our findings and suggest potential improvements to the rules of the game. We also touch on the real-world applications of our research and make recommendations for the future of Egyptian Ratscrew modeling.

Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventually available. This motivates us to propose a novel computer vision problem called: `Open World Object Detection', where a model is tasked to: 1) identify objects that have not been introduced to it as `unknown', without explicit supervision to do so, and 2) incrementally learn these identified unknown categories without forgetting previously learned classes, when the corresponding labels are progressively received. We formulate the problem, introduce a strong evaluation protocol and provide a novel solution, which we call ORE: Open World Object Detector, based on contrastive clustering and energy based unknown identification. Our experimental evaluation and ablation studies analyze the efficacy of ORE in achieving Open World objectives. As an interesting by-product, we find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-of-the-art performance, with no extra methodological effort. We hope that our work will attract further research into this newly identified, yet crucial research direction.

北京阿比特科技有限公司