亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Boolean automata networks (aka Boolean networks) are space-time discrete dynamical systems, studied as a model of computation and as a representative model of natural phenomena. A collection of simple entities (the automata) update their 0-1 states according to local rules. The dynamics of the network is highly sensitive to update modes, i.e., to the schedule according to which the automata apply their local rule. A new family of update modes appeared recently, called block-parallel, which is dual to the well studied block-sequential. Although basic, it embeds the rich feature of update repetitions among a temporal updating period, allowing for atypical asymptotic behaviors. In this paper, we prove that it is able to breed complex computations, squashing almost all decision problems on the dynamics to the traditionally highest (for reachability questions) class PSPACE. Despite obtaining these complexity bounds for a broad set of local and global properties, we also highlight a surprising gap: bijectivity is still coNP.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國(guo)際網(wang)絡會(hui)議。 Publisher:IFIP。 SIT:

Detecting a diverse range of objects under various driving scenarios is essential for the effectiveness of autonomous driving systems. However, the real-world data collected often lacks the necessary diversity presenting a long-tail distribution. Although synthetic data has been utilized to overcome this issue by generating virtual scenes, it faces hurdles such as a significant domain gap and the substantial efforts required from 3D artists to create realistic environments. To overcome these challenges, we present ARSim, a fully automated, comprehensive, modular framework designed to enhance real multi-view image data with 3D synthetic objects of interest. The proposed method integrates domain adaptation and randomization strategies to address covariate shift between real and simulated data by inferring essential domain attributes from real data and employing simulation-based randomization for other attributes. We construct a simplified virtual scene using real data and strategically place 3D synthetic assets within it. Illumination is achieved by estimating light distribution from multiple images capturing the surroundings of the vehicle. Camera parameters from real data are employed to render synthetic assets in each frame. The resulting augmented multi-view consistent dataset is used to train a multi-camera perception network for autonomous vehicles. Experimental results on various AV perception tasks demonstrate the superior performance of networks trained on the augmented dataset.

Dynamical systems across the sciences, from electrical circuits to ecological networks, undergo qualitative and often catastrophic changes in behavior, called bifurcations, when their underlying parameters cross a threshold. Existing methods predict oncoming catastrophes in individual systems but are primarily time-series-based and struggle both to categorize qualitative dynamical regimes across diverse systems and to generalize to real data. To address this challenge, we propose a data-driven, physically-informed deep-learning framework for classifying dynamical regimes and characterizing bifurcation boundaries based on the extraction of topologically invariant features. We focus on the paradigmatic case of the supercritical Hopf bifurcation, which is used to model periodic dynamics across a wide range of applications. Our convolutional attention method is trained with data augmentations that encourage the learning of topological invariants which can be used to detect bifurcation boundaries in unseen systems and to design models of biological systems like oscillatory gene regulatory networks. We further demonstrate our method's use in analyzing real data by recovering distinct proliferation and differentiation dynamics along pancreatic endocrinogenesis trajectory in gene expression space based on single-cell data. Our method provides valuable insights into the qualitative, long-term behavior of a wide range of dynamical systems, and can detect bifurcations or catastrophic transitions in large-scale physical and biological systems.

Convolutional neural networks (CNNs) represent one of the most widely used neural network architectures, showcasing state-of-the-art performance in computer vision tasks. Although larger CNNs generally exhibit higher accuracy, their size can be effectively reduced by "tensorization" while maintaining accuracy. Tensorization consists of replacing the convolution kernels with compact decompositions such as Tucker, Canonical Polyadic decompositions, or quantum-inspired decompositions such as matrix product states, and directly training the factors in the decompositions to bias the learning towards low-rank decompositions. But why doesn't tensorization seem to impact the accuracy adversely? We explore this by assessing how truncating the convolution kernels of dense (untensorized) CNNs impact their accuracy. Specifically, we truncated the kernels of (i) a vanilla four-layer CNN and (ii) ResNet-50 pre-trained for image classification on CIFAR-10 and CIFAR-100 datasets. We found that kernels (especially those inside deeper layers) could often be truncated along several cuts resulting in significant loss in kernel norm but not in classification accuracy. This suggests that such ``correlation compression'' (underlying tensorization) is an intrinsic feature of how information is encoded in dense CNNs. We also found that aggressively truncated models could often recover the pre-truncation accuracy after only a few epochs of re-training, suggesting that compressing the internal correlations of convolution layers does not often transport the model to a worse minimum. Our results can be applied to tensorize and compress CNN models more effectively.

Bayesian approaches for training deep neural networks (BNNs) have received significant interest and have been effectively utilized in a wide range of applications. There have been several studies on the properties of posterior concentrations of BNNs. However, most of these studies only demonstrate results in BNN models with sparse or heavy-tailed priors. Surprisingly, no theoretical results currently exist for BNNs using Gaussian priors, which are the most commonly used one. The lack of theory arises from the absence of approximation results of Deep Neural Networks (DNNs) that are non-sparse and have bounded parameters. In this paper, we present a new approximation theory for non-sparse DNNs with bounded parameters. Additionally, based on the approximation theory, we show that BNNs with non-sparse general priors can achieve near-minimax optimal posterior concentration rates to the true model.

Quantum artificial intelligence is a frontier of artificial intelligence research, pioneering quantum AI-powered circuits to address problems beyond the reach of deep learning with classical architectures. This work implements a large-scale quantum-activated recurrent neural network possessing more than 3 trillion hardware nodes/cm$^2$, originating from repeatable atomic-scale nucleation dynamics in an amorphous material integrated on-chip, controlled with 0.07 nW electric power per readout channel. Compared to the best-performing reservoirs currently reported, this implementation increases the scale of the network by two orders of magnitude and reduces the power consumption by six, reaching power efficiencies in the range of the human brain, dissipating 0.2 nW/neuron. When interrogated by a classical input, the chip implements a large-scale hardware security model, enabling dictionary-free authentication secure against statistical inference attacks, including AI's present and future development, even for an adversary with a copy of all the classical components available. Experimental tests report 99.6% reliability, 100% user authentication accuracy, and an ideal 50% key uniqueness. Due to its quantum nature, the chip supports a bit density per feature size area three times higher than the best technology available, with the capacity to store more than $2^{1104}$ keys in a footprint of 1 cm$^2$. Such a quantum-powered platform could help counteract the emerging form of warfare led by the cybercrime industry in breaching authentication to target small to large-scale facilities, from private users to intelligent energy grids.

Printing custom DNA sequences is essential to scientific and biomedical research, but the technology can be used to manufacture plagues as well as cures. Just as ink printers recognize and reject attempts to counterfeit money, DNA synthesizers and assemblers should deny unauthorized requests to make viral DNA that could be used to ignite a pandemic. There are three complications. First, we don't need to quickly update printers to deal with newly discovered currencies, whereas we regularly learn of new viruses and other biological threats. Second, anti-counterfeiting specifications on a local printer can't be extracted and misused by malicious actors, unlike information on biological threats. Finally, any screening must keep the inspected DNA sequences private, as they may constitute valuable trade secrets. Here we describe SecureDNA, a free, privacy-preserving, and fully automated system capable of verifiably screening all DNA synthesis orders of 30+ base pairs against an up-to-date database of hazards, and its operational performance and specificity when applied to 67 million base pairs of DNA synthesized by providers in the United States, Europe, and China.

We study the problem of computing robust controllable sets for discrete-time linear systems with additive uncertainty. We propose a tractable and scalable approach to inner- and outer-approximate robust controllable sets using constrained zonotopes, when the additive uncertainty set is a symmetric, convex, and compact set. Our least-squares-based approach uses novel closed-form approximations of the Pontryagin difference between a constrained zonotopic minuend and a symmetric, convex, and compact subtrahend. Unlike existing approaches, our approach does not rely on convex optimization solvers, and is projection-free for ellipsoidal and zonotopic uncertainty sets. We also propose a least-squares-based approach to compute a convex, polyhedral outer-approximation to constrained zonotopes, and characterize sufficient conditions under which all these approximations are exact. We demonstrate the computational efficiency and scalability of our approach in several case studies, including the design of abort-safe rendezvous trajectories for a spacecraft in near-rectilinear halo orbit under uncertainty. Our approach can inner-approximate a 20-step robust controllable set for a 100-dimensional linear system in under 15 seconds on a standard computer.

Regression models for compositional data are common in several areas of knowledge. As in other classes of regression models, it is desirable to perform diagnostic analysis in these models using residuals that are approximately standard normally distributed. However, for regression models for compositional data, there has not been any multivariate residual that meets this requirement. In this work, we introduce a class of asymptotically standard normally distributed residuals for compositional data based on bootstrap. Monte Carlo simulation studies indicate that the distributions of the residuals of this class are well approximated by the standard normal distribution in small samples. An application to simulated data also suggests that one of the residuals of the proposed class is better to identify model misspecification than its competitors. Finally, the usefulness of the best residual of the proposed class is illustrated through an application on sleep stages. The class of residuals proposed here can also be used in other classes of multivariate regression models.

In sound event detection (SED), convolution neural networks (CNNs) are widely used to extract time-frequency patterns from the input spectrogram. However, features extracted by CNN can be insensitive to the shift of time-frequency patterns along the frequency axis. To address this issue, frequency dynamic convolution (FDY) has been proposed, which applies different kernels to different frequency components. Compared to the vannila CNN, FDY requires several times more parameters. In this paper, a more efficient solution named frequency-aware convolution (FAC) is proposed. In FAC, frequency-positional information is encoded in a vector and added to the input spectrogram. To match the amplitude of input, the encoding vector is scaled adaptively and channel-independently. Experiments are carried out in the context of DCASE 2022 task 4, and the results demonstrate that FAC can achieve comparable performance to that of FDY with only 515 additional parameters, while FDY requires 8.02 million additional parameters. The ablation study shows that scaling the encoding vector adaptively and channel-independently is critical to the performance of FAC.

The ability to simulate realistic networks based on empirical data is an important task across scientific disciplines, from epidemiology to computer science. Often simulation approaches involve selecting a suitable network generative model such as Erd\"os-R\'enyi or small-world. However, few tools are available to quantify if a particular generative model is suitable for capturing a given network structure or organization. We utilize advances in interpretable machine learning to classify simulated networks by our generative models based on various network attributes, using both primary features and their interactions. Our study underscores the significance of specific network features and their interactions in distinguishing generative models, comprehending complex network structures, and forming real-world networks

北京阿比特科技有限公司