Transformers have emerged as viable alternatives to convolutional neural networks owing to their ability to learn non-local region relationships in the spatial domain. The self-attention mechanism of the transformer enables transformers to capture long-range dependencies in the images, which might be desirable for accelerated MRI image reconstruction as the effect of undersampling is non-local in the image domain. Despite its computational efficiency, the window-based transformers suffer from restricted receptive fields as the dependencies are limited to within the scope of the image windows. We propose a window-based transformer network that integrates dilated attention mechanism and convolution for accelerated MRI image reconstruction. The proposed network consists of dilated and dense neighborhood attention transformers to enhance the distant neighborhood pixel relationship and introduce depth-wise convolutions within the transformer module to learn low-level translation invariant features for accelerated MRI image reconstruction. The proposed model is trained in a self-supervised manner. We perform extensive experiments for multi-coil MRI acceleration for coronal PD, coronal PDFS and axial T2 contrasts with 4x and 5x under-sampling in self-supervised learning based on k-space splitting. We compare our method against other reconstruction architectures and the parallel domain self-supervised learning baseline. Results show that the proposed model exhibits improvement margins of (i) around 1.40 dB in PSNR and around 0.028 in SSIM on average over other architectures (ii) around 1.44 dB in PSNR and around 0.029 in SSIM over parallel domain self-supervised learning. The code is available at //github.com/rahul-gs-16/sdlformer.git
We investigate the regret-minimisation problem in a multi-armed bandit setting with arbitrary corruptions. Similar to the classical setup, the agent receives rewards generated independently from the distribution of the arm chosen at each time. However, these rewards are not directly observed. Instead, with a fixed $\varepsilon\in (0,\frac{1}{2})$, the agent observes a sample from the chosen arm's distribution with probability $1-\varepsilon$, or from an arbitrary corruption distribution with probability $\varepsilon$. Importantly, we impose no assumptions on these corruption distributions, which can be unbounded. In this setting, accommodating potentially unbounded corruptions, we establish a problem-dependent lower bound on regret for a given family of arm distributions. We introduce CRIMED, an asymptotically-optimal algorithm that achieves the exact lower bound on regret for bandits with Gaussian distributions with known variance. Additionally, we provide a finite-sample analysis of CRIMED's regret performance. Notably, CRIMED can effectively handle corruptions with $\varepsilon$ values as high as $\frac{1}{2}$. Furthermore, we develop a tight concentration result for medians in the presence of arbitrary corruptions, even with $\varepsilon$ values up to $\frac{1}{2}$, which may be of independent interest. We also discuss an extension of the algorithm for handling misspecification in Gaussian model.
Taxation and government spending are crucial tools for governments to promote economic growth and maintain social equity. However, the difficulty in accurately predicting the dynamic strategies of diverse self-interested households presents a challenge for governments to implement effective tax policies. Given its proficiency in modeling other agents in partially observable environments and adaptively learning to find optimal policies, Multi-Agent Reinforcement Learning (MARL) is highly suitable for solving dynamic games between the government and numerous households. Although MARL shows more potential than traditional methods such as the genetic algorithm and dynamic programming, there is a lack of large-scale multi-agent reinforcement learning economic simulators. Therefore, we propose a MARL environment, named \textbf{TaxAI}, for dynamic games involving $N$ households, government, firms, and financial intermediaries based on the Bewley-Aiyagari economic model. Our study benchmarks 2 traditional economic methods with 7 MARL methods on TaxAI, demonstrating the effectiveness and superiority of MARL algorithms. Moreover, TaxAI's scalability in simulating dynamic interactions between the government and 10,000 households, coupled with real-data calibration, grants it a substantial improvement in scale and reality over existing simulators. Therefore, TaxAI is the most realistic economic simulator, which aims to generate feasible recommendations for governments and individuals.
Recent increase of remote-work, online meeting and tele-operation task makes people find that gesture for avatars and communication robots is more important than we have thought. It is one of the key factors to achieve smooth and natural communication between humans and AI systems and has been intensively researched. Current gesture generation methods are mostly based on deep neural network using text, audio and other information as the input, however, they generate gestures mainly based on audio, which is called a beat gesture. Although the ratio of the beat gesture is more than 70% of actual human gestures, content based gestures sometimes play an important role to make avatars more realistic and human-like. In this paper, we propose a attention-based contrastive learning for text-to-gesture (ACT2G), where generated gestures represent content of the text by estimating attention weight for each word from the input text. In the method, since text and gesture features calculated by the attention weight are mapped to the same latent space by contrastive learning, once text is given as input, the network outputs a feature vector which can be used to generate gestures related to the content. User study confirmed that the gestures generated by ACT2G were better than existing methods. In addition, it was demonstrated that wide variation of gestures were generated from the same text by changing attention weights by creators.
Manipulating objects without grasping them is an essential component of human dexterity, referred to as non-prehensile manipulation. Non-prehensile manipulation may enable more complex interactions with the objects, but also presents challenges in reasoning about gripper-object interactions. In this work, we introduce Hybrid Actor-Critic Maps for Manipulation (HACMan), a reinforcement learning approach for 6D non-prehensile manipulation of objects using point cloud observations. HACMan proposes a temporally-abstracted and spatially-grounded object-centric action representation that consists of selecting a contact location from the object point cloud and a set of motion parameters describing how the robot will move after making contact. We modify an existing off-policy RL algorithm to learn in this hybrid discrete-continuous action representation. We evaluate HACMan on a 6D object pose alignment task in both simulation and in the real world. On the hardest version of our task, with randomized initial poses, randomized 6D goals, and diverse object categories, our policy demonstrates strong generalization to unseen object categories without a performance drop, achieving an 89% success rate on unseen objects in simulation and 50% success rate with zero-shot transfer in the real world. Compared to alternative action representations, HACMan achieves a success rate more than three times higher than the best baseline. With zero-shot sim2real transfer, our policy can successfully manipulate unseen objects in the real world for challenging non-planar goals, using dynamic and contact-rich non-prehensile skills. Videos can be found on the project website: //hacman-2023.github.io.
With translation equivariance, convolution neural networks (CNNs) have achieved great success in retinal vessel segmentation. However, some other symmetries of the vascular morphology are not characterized by CNNs, such as rotation and scale symmetries. To embed more equivariance into CNNs and achieve the accuracy requirement for retinal vessel segmentation, we construct a novel convolution operator (FRS-Conv), which is Fourier parameterized and equivariant to rotation and scaling. Specifically, we first adopt a new parameterization scheme, which enables convolutional filters to arbitrarily perform transformations with high accuracy. Secondly, we derive the formulations for the rotation and scale equivariant convolution mapping. Finally, we construct FRS-Conv following the proposed formulations and replace the traditional convolution filters in U-Net and Iter-Net with FRS-Conv (FRS-Nets). We faithfully reproduce all compared methods and conduct comprehensive experiments on three public datasets under both in-dataset and cross-dataset settings. With merely 13.9% parameters of corresponding baselines, FRS-Nets have achieved state-of-the-art performance and significantly outperform all compared methods. It demonstrates the remarkable accuracy, generalization, and clinical application potential of FRS-Nets.
Diabetic retinopathy (DR) is the most common diabetic complication, which usually leads to retinal damage, vision loss, and even blindness. A computer-aided DR grading system has a significant impact on helping ophthalmologists with rapid screening and diagnosis. Recent advances in fundus photography have precipitated the development of novel retinal imaging cameras and their subsequent implementation in clinical practice. However, most deep learning-based algorithms for DR grading demonstrate limited generalization across domains. This inferior performance stems from variance in imaging protocols and devices inducing domain shifts. We posit that declining model performance between domains arises from learning spurious correlations in the data. Incorporating do-operations from causality analysis into model architectures may mitigate this issue and improve generalizability. Specifically, a novel universal structural causal model (SCM) was proposed to analyze spurious correlations in fundus imaging. Building on this, a causality-inspired diabetic retinopathy grading framework named CauDR was developed to eliminate spurious correlations and achieve more generalizable DR diagnostics. Furthermore, existing datasets were reorganized into 4DR benchmark for DG scenario. Results demonstrate the effectiveness and the state-of-the-art (SOTA) performance of CauDR.
Understanding the fundamental principles behind the success of deep neural networks is one of the most important open questions in the current literature. To this end, we study the training problem of deep neural networks and introduce an analytic approach to unveil hidden convexity in the optimization landscape. We consider a deep parallel ReLU network architecture, which also includes standard deep networks and ResNets as its special cases. We then show that pathwise regularized training problems can be represented as an exact convex optimization problem. We further prove that the equivalent convex problem is regularized via a group sparsity inducing norm. Thus, a path regularized parallel ReLU network can be viewed as a parsimonious convex model in high dimensions. More importantly, since the original training problem may not be trainable in polynomial-time, we propose an approximate algorithm with a fully polynomial-time complexity in all data dimensions. Then, we prove strong global optimality guarantees for this algorithm. We also provide experiments corroborating our theory.
Convolutional neural networks have made significant progresses in edge detection by progressively exploring the context and semantic features. However, local details are gradually suppressed with the enlarging of receptive fields. Recently, vision transformer has shown excellent capability in capturing long-range dependencies. Inspired by this, we propose a novel transformer-based edge detector, \emph{Edge Detection TransformER (EDTER)}, to extract clear and crisp object boundaries and meaningful edges by exploiting the full image context information and detailed local cues simultaneously. EDTER works in two stages. In Stage I, a global transformer encoder is used to capture long-range global context on coarse-grained image patches. Then in Stage II, a local transformer encoder works on fine-grained patches to excavate the short-range local cues. Each transformer encoder is followed by an elaborately designed Bi-directional Multi-Level Aggregation decoder to achieve high-resolution features. Finally, the global context and local cues are combined by a Feature Fusion Module and fed into a decision head for edge prediction. Extensive experiments on BSDS500, NYUDv2, and Multicue demonstrate the superiority of EDTER in comparison with state-of-the-arts.
Defensive deception is a promising approach for cyberdefense. Although defensive deception is increasingly popular in the research community, there has not been a systematic investigation of its key components, the underlying principles, and its tradeoffs in various problem settings. This survey paper focuses on defensive deception research centered on game theory and machine learning, since these are prominent families of artificial intelligence approaches that are widely employed in defensive deception. This paper brings forth insights, lessons, and limitations from prior work. It closes with an outline of some research directions to tackle major gaps in current defensive deception research.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.