亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We investigate the regret-minimisation problem in a multi-armed bandit setting with arbitrary corruptions. Similar to the classical setup, the agent receives rewards generated independently from the distribution of the arm chosen at each time. However, these rewards are not directly observed. Instead, with a fixed $\varepsilon\in (0,\frac{1}{2})$, the agent observes a sample from the chosen arm's distribution with probability $1-\varepsilon$, or from an arbitrary corruption distribution with probability $\varepsilon$. Importantly, we impose no assumptions on these corruption distributions, which can be unbounded. In this setting, accommodating potentially unbounded corruptions, we establish a problem-dependent lower bound on regret for a given family of arm distributions. We introduce CRIMED, an asymptotically-optimal algorithm that achieves the exact lower bound on regret for bandits with Gaussian distributions with known variance. Additionally, we provide a finite-sample analysis of CRIMED's regret performance. Notably, CRIMED can effectively handle corruptions with $\varepsilon$ values as high as $\frac{1}{2}$. Furthermore, we develop a tight concentration result for medians in the presence of arbitrary corruptions, even with $\varepsilon$ values up to $\frac{1}{2}$, which may be of independent interest. We also discuss an extension of the algorithm for handling misspecification in Gaussian model.

相關內容

We explain how to use Kolmogorov Superposition Theorem (KST) to break the curse of dimensionality when approximating a dense class of multivariate continuous functions. We first show that there is a class of functions called $K$-Lipschitz continuous in $C([0,1]^d)$ which can be approximated by a special ReLU neural network of two hidden layers with a dimension independent approximation rate $O(n^{-1})$ with approximation constant increasing quadratically in $d$. The number of parameters used in such neural network approximation equals to $(6d+2)n$. Next we introduce KB-splines by using linear B-splines to replace the K-outer function and smooth the KB-splines to have the so-called LKB-splines as the basis for approximation. Our numerical evidence shows that the curse of dimensionality is broken in the following sense: When using the standard discrete least squares (DLS) method to approximate a continuous function, there exists a pivotal set of points in $[0,1]^d$ with size at most $O(nd)$ such that the rooted mean squares error (RMSE) from the DLS based on the pivotal set is similar to the RMSE of the DLS based on the original set with size $O(n^d)$. In addition, by using matrix cross approximation technique, the number of LKB-splines used for approximation is the same as the size of the pivotal data set. Therefore, we do not need too many basis functions as well as too many function values to approximate a high dimensional continuous function $f$.

Real-time perception requires planned resource utilization. Computational planning in real-time perception is governed by two considerations -- accuracy and latency. There exist run-time decisions (e.g. choice of input resolution) that induce tradeoffs affecting performance on a given hardware, arising from intrinsic (content, e.g. scene clutter) and extrinsic (system, e.g. resource contention) characteristics. Earlier runtime execution frameworks employed rule-based decision algorithms and operated with a fixed algorithm latency budget to balance these concerns, which is sub-optimal and inflexible. We propose Chanakya, a learned approximate execution framework that naturally derives from the streaming perception paradigm, to automatically learn decisions induced by these tradeoffs instead. Chanakya is trained via novel rewards balancing accuracy and latency implicitly, without approximating either objectives. Chanakya simultaneously considers intrinsic and extrinsic context, and predicts decisions in a flexible manner. Chanakya, designed with low overhead in mind, outperforms state-of-the-art static and dynamic execution policies on public datasets on both server GPUs and edge devices.

Few-shot relation extraction involves identifying the type of relationship between two specific entities within a text, using a limited number of annotated samples. A variety of solutions to this problem have emerged by applying meta-learning and neural graph techniques which typically necessitate a training process for adaptation. Recently, the strategy of in-context learning has been demonstrating notable results without the need of training. Few studies have already utilized in-context learning for zero-shot information extraction. Unfortunately, the evidence for inference is either not considered or implicitly modeled during the construction of chain-of-thought prompts. In this paper, we propose a novel approach for few-shot relation extraction using large language models, named CoT-ER, chain-of-thought with explicit evidence reasoning. In particular, CoT-ER first induces large language models to generate evidences using task-specific and concept-level knowledge. Then these evidences are explicitly incorporated into chain-of-thought prompting for relation extraction. Experimental results demonstrate that our CoT-ER approach (with 0% training data) achieves competitive performance compared to the fully-supervised (with 100% training data) state-of-the-art approach on the FewRel1.0 and FewRel2.0 datasets.

Typically, multi-armed bandit (MAB) experiments are analyzed at the end of the study and thus require the analyst to specify a fixed sample size in advance. However, in many online learning applications, it is advantageous to continuously produce inference on the average treatment effect (ATE) between arms as new data arrive and determine a data-driven stopping time for the experiment. Existing work on continuous inference for adaptive experiments assumes that the treatment assignment probabilities are bounded away from zero and one, thus excluding nearly all standard bandit algorithms. In this work, we develop the Mixture Adaptive Design (MAD), a new experimental design for multi-armed bandits that enables continuous inference on the ATE with guarantees on statistical validity and power for nearly any bandit algorithm. On a high level, the MAD "mixes" a bandit algorithm of the user's choice with a Bernoulli design through a tuning parameter $\delta_t$, where $\delta_t$ is a deterministic sequence that controls the priority placed on the Bernoulli design as the sample size grows. We show that for $\delta_t = o\left(1/t^{1/4}\right)$, the MAD produces a confidence sequence that is asymptotically valid and guaranteed to shrink around the true ATE. We empirically show that the MAD improves the coverage and power of ATE inference in MAB experiments without significant losses in finite-sample reward.

Deception and persuasion play a critical role in long-horizon dialogues between multiple parties, especially when the interests, goals, and motivations of the participants are not aligned. Such complex tasks pose challenges for current Large Language Models (LLM) as deception and persuasion can easily mislead them, especially in long-horizon multi-party dialogues. To this end, we explore the game of Avalon: The Resistance, a social deduction game in which players must determine each other's hidden identities to complete their team's objective. We introduce an online testbed and a dataset containing 20 carefully collected and labeled games among human players that exhibit long-horizon deception in a cooperative-competitive setting. We discuss the capabilities of LLMs to utilize deceptive long-horizon conversations between six human players to determine each player's goal and motivation. Particularly, we discuss the multimodal integration of the chat between the players and the game's state that grounds the conversation, providing further insights into the true player identities. We find that even current state-of-the-art LLMs do not reach human performance, making our dataset a compelling benchmark to investigate the decision-making and language-processing capabilities of LLMs. Our dataset and online testbed can be found at our project website: //sstepput.github.io/Avalon-NLU/

The emergence of virtual avatars provides innovative opportunities for remote conferencing, education, and more. Our study investigates how the realism of avatars, used by native English speakers, impacts the anxiety levels of English as a Second Language (ESL) speakers during interactions. ESL participants engaged in conversations with native English speakers represented through cartoonish avatars, realistic-like avatars, or actual video streams. We measured both the ESL speakers' self-reported anxiety and their physiological indicators of anxiety. Our findings show that interactions with native speakers using cartoonish avatars or direct video lead to reduced anxiety levels among ESL participants. However, interactions with avatars that closely resemble humans heightened these anxieties. These insights are critically important for the design and application of virtual avatars, especially in addressing cross-cultural communication barriers and enhancing user experience.

Since the cyberspace consolidated as fifth warfare dimension, the different actors of the defense sector began an arms race toward achieving cyber superiority, on which research, academic and industrial stakeholders contribute from a dual vision, mostly linked to a large and heterogeneous heritage of developments and adoption of civilian cybersecurity capabilities. In this context, augmenting the conscious of the context and warfare environment, risks and impacts of cyber threats on kinetic actuations became a critical rule-changer that military decision-makers are considering. A major challenge on acquiring mission-centric Cyber Situational Awareness (CSA) is the dynamic inference and assessment of the vertical propagations from situations that occurred at the mission supportive Information and Communications Technologies (ICT), up to their relevance at military tactical, operational and strategical views. In order to contribute on acquiring CSA, this paper addresses a major gap in the cyber defence state-of-the-art: the dynamic identification of Key Cyber Terrains (KCT) on a mission-centric context. Accordingly, the proposed KCT identification approach explores the dependency degrees among tasks and assets defined by commanders as part of the assessment criteria. These are correlated with the discoveries on the operational network and the asset vulnerabilities identified thorough the supported mission development. The proposal is presented as a reference model that reveals key aspects for mission-centric KCT analysis and supports its enforcement and further enforcement by including an illustrative application case.

The military is investigating methods to improve communication and agility in its multi-domain operations (MDO). Nascent popularity of Internet of Things (IoT) has gained traction in public and government domains. Its usage in MDO may revolutionize future battlefields and may enable strategic advantage. While this technology offers leverage to military capabilities, it comes with challenges where one is the uncertainty and associated risk. A key question is how can these uncertainties be addressed. Recently published studies proposed information camouflage to transform information from one data domain to another. As this is comparatively a new approach, we investigate challenges of such transformations and how these associated uncertainties can be detected and addressed, specifically unknown-unknowns to improve decision-making.

Defensive deception is a promising approach for cyberdefense. Although defensive deception is increasingly popular in the research community, there has not been a systematic investigation of its key components, the underlying principles, and its tradeoffs in various problem settings. This survey paper focuses on defensive deception research centered on game theory and machine learning, since these are prominent families of artificial intelligence approaches that are widely employed in defensive deception. This paper brings forth insights, lessons, and limitations from prior work. It closes with an outline of some research directions to tackle major gaps in current defensive deception research.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司