We propose a multivariate GARCH model for non-stationary health time series by modifying the variance of the observations of the standard state space model. The proposed model provides an intuitive way of dealing with heteroskedastic data using the conditional nature of state space models. We follow the Bayesian paradigm to perform the inference procedure. In particular, we use Markov chain Monte Carlo methods to obtain samples from the resultant posterior distribution. Due to the natural temporal correlation structure induced on model parameters, we use the forward filtering backward sampling algorithm to efficiently obtain samples from the posterior distribution. The proposed model also handles missing data in a fully Bayesian fashion. We validate our model on synthetic data, and then use it to analyze a data set obtained from an intensive care unit in a Montreal hospital. We further show that our proposed models offer better performance, in terms of WAIC, than standard state space models. The proposed model provides a new way to model multivariate heteroskedastic non-stationary time series data and the simplicity in applying the WAIC allows us to compare competing models.
Anomalous diffusion is often modelled in terms of the subdiffusion equation, which can involve a weakly singular source term. For this case, many predominant time stepping methods, including the correction of high-order BDF schemes [{\sc Jin, Li, and Zhou}, SIAM J. Sci. Comput., 39 (2017), A3129--A3152], may suffer from a severe order reduction. To fill in this gap, we propose a smoothing method for time stepping schemes, where the singular term is regularized by using a $m$-fold integral-differential calculus and the equation is discretized by the $k$-step BDF convolution quadrature, called ID$m$-BDF$k$ method. We prove that the desired $k$th-order convergence can be recovered even if the source term is a weakly singular and the initial data is not compatible. Numerical experiments illustrate the theoretical results.
External validation is often recommended to ensure the generalizability of ML models. However, it neither guarantees generalizability nor equates to a model's clinical usefulness (the ultimate goal of any clinical decision-support tool). External validation is misaligned with current healthcare ML needs. First, patient data changes across time, geography, and facilities. These changes create significant volatility in the performance of a single fixed model (especially for deep learning models, which dominate clinical ML). Second, newer ML techniques, current market forces, and updated regulatory frameworks are enabling frequent updating and monitoring of individual deployed model instances. We submit that external validation is insufficient to establish ML models' safety or utility. Proposals to fix the external validation paradigm do not go far enough. Continued reliance on it as the ultimate test is likely to lead us astray. We propose the MLOps-inspired paradigm of recurring local validation as an alternative that ensures the validity of models while protecting against performance-disruptive data variability. This paradigm relies on site-specific reliability tests before every deployment, followed by regular and recurrent checks throughout the life cycle of the deployed algorithm. Initial and recurrent reliability tests protect against performance-disruptive distribution shifts, and concept drifts that jeopardize patient safety.
Recent studies indicate that kernel machines can often perform similarly or better than deep neural networks (DNNs) on small datasets. The interest in kernel machines has been additionally bolstered by the discovery of their equivalence to wide neural networks in certain regimes. However, a key feature of DNNs is their ability to scale the model size and training data size independently, whereas in traditional kernel machines model size is tied to data size. Because of this coupling, scaling kernel machines to large data has been computationally challenging. In this paper, we provide a way forward for constructing large-scale general kernel models, which are a generalization of kernel machines that decouples the model and data, allowing training on large datasets. Specifically, we introduce EigenPro 3.0, an algorithm based on projected dual preconditioned SGD and show scaling to model and data sizes which have not been possible with existing kernel methods.
When an exposure of interest is confounded by unmeasured factors, an instrumental variable (IV) can be used to identify and estimate certain causal contrasts. Identification of the marginal average treatment effect (ATE) from IVs relies on strong untestable structural assumptions. When one is unwilling to assert such structure, IVs can nonetheless be used to construct bounds on the ATE. Famously, Balke and Pearl (1997) proved tight bounds on the ATE for a binary outcome, in a randomized trial with noncompliance and no covariate information. We demonstrate how these bounds remain useful in observational settings with baseline confounders of the IV, as well as randomized trials with measured baseline covariates. The resulting bounds on the ATE are non-smooth functionals, and thus standard nonparametric efficiency theory is not immediately applicable. To remedy this, we propose (1) under a novel margin condition, influence function-based estimators of the bounds that can attain parametric convergence rates when the nuisance functions are modeled flexibly, and (2) estimators of smooth approximations of these bounds. We propose extensions to continuous outcomes, explore finite sample properties in simulations, and illustrate the proposed estimators in a randomized experiment studying the effects of vaccination encouragement on flu-related hospital visits.
Language is constantly changing and evolving, leaving language models to become quickly outdated. Consequently, we should continuously update our models with new data to expose them to new events and facts. However, that requires additional computing, which means new carbon emissions. Do any measurable benefits justify this cost? This paper looks for empirical evidence to support continuous training. We reproduce existing benchmarks and extend them to include additional time periods, models, and tasks. Our results show that the downstream task performance of temporally adapted English models for social media data do not improve over time. Pretrained models without temporal adaptation are actually significantly more effective and efficient. However, we also note a lack of suitable temporal benchmarks. Our findings invite a critical reflection on when and how to temporally adapt language models, accounting for sustainability.
Actor-critic deep reinforcement learning (DRL) algorithms have recently achieved prominent success in tackling various challenging reinforcement learning (RL) problems, particularly complex control tasks with high-dimensional continuous state and action spaces. Nevertheless, existing research showed that actor-critic DRL algorithms often failed to explore their learning environments effectively, resulting in limited learning stability and performance. To address this limitation, several ensemble DRL algorithms have been proposed lately to boost exploration and stabilize the learning process. However, most of existing ensemble algorithms do not explicitly train all base learners towards jointly optimizing the performance of the ensemble. In this paper, we propose a new technique to train an ensemble of base learners based on an innovative multi-step integration method. This training technique enables us to develop a new hierarchical learning algorithm for ensemble DRL that effectively promotes inter-learner collaboration through stable inter-learner parameter sharing. The design of our new algorithm is verified theoretically. The algorithm is also shown empirically to outperform several state-of-the-art DRL algorithms on multiple benchmark RL problems.
Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.
Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.
The prevalence of networked sensors and actuators in many real-world systems such as smart buildings, factories, power plants, and data centers generate substantial amounts of multivariate time series data for these systems. The rich sensor data can be continuously monitored for intrusion events through anomaly detection. However, conventional threshold-based anomaly detection methods are inadequate due to the dynamic complexities of these systems, while supervised machine learning methods are unable to exploit the large amounts of data due to the lack of labeled data. On the other hand, current unsupervised machine learning approaches have not fully exploited the spatial-temporal correlation and other dependencies amongst the multiple variables (sensors/actuators) in the system for detecting anomalies. In this work, we propose an unsupervised multivariate anomaly detection method based on Generative Adversarial Networks (GANs). Instead of treating each data stream independently, our proposed MAD-GAN framework considers the entire variable set concurrently to capture the latent interactions amongst the variables. We also fully exploit both the generator and discriminator produced by the GAN, using a novel anomaly score called DR-score to detect anomalies by discrimination and reconstruction. We have tested our proposed MAD-GAN using two recent datasets collected from real-world CPS: the Secure Water Treatment (SWaT) and the Water Distribution (WADI) datasets. Our experimental results showed that the proposed MAD-GAN is effective in reporting anomalies caused by various cyber-intrusions compared in these complex real-world systems.