亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Classical game theory is a powerful tool focusing on optimized resource distribution, allocation and sharing in classical wired and wireless networks. As quantum networks are emerging as a means of providing true connectivity between quantum computers, it is imperative and crucial to exploit game theory for addressing challenges like entanglement distribution and access, routing, topology extraction and inference for quantum networks. Quantum networks provide the promising opportunity of employing quantum games owing to their inherent capability of generating and sharing quantum states. Besides, quantum games offer enhanced payoffs and winning probabilities, new strategies and equilibria, which are unimaginable in classical games. Employing quantum game theory to solve fundamental challenges in quantum networks opens a new fundamental research direction necessitating inter-disciplinary efforts. In this article, we introduce a novel game-theoretical framework for exploiting quantum strategies to solve, as archetypal example, one of the key functionality of a quantum network, namely, the entanglement distribution. We compare the quantum strategies with classical ones by showing the quantum advantages in terms of link fidelity improvement and latency decrease in communication. In future, we will generalize our game framework to optimize entanglement distribution and access over any quantum network topology. We will also explore how quantum games can be leveraged to address other challenges like routing, optimization of quantum operations and topology design.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Understanding how well a deep generative model captures a distribution of high-dimensional data remains an important open challenge. It is especially difficult for certain model classes, such as Generative Adversarial Networks and Diffusion Models, whose models do not admit exact likelihoods. In this work, we demonstrate that generalized empirical likelihood (GEL) methods offer a family of diagnostic tools that can identify many deficiencies of deep generative models (DGMs). We show, with appropriate specification of moment conditions, that the proposed method can identify which modes have been dropped, the degree to which DGMs are mode imbalanced, and whether DGMs sufficiently capture intra-class diversity. We show how to combine techniques from Maximum Mean Discrepancy and Generalized Empirical Likelihood to create not only distribution tests that retain per-sample interpretability, but also metrics that include label information. We find that such tests predict the degree of mode dropping and mode imbalance up to 60% better than metrics such as improved precision/recall. We provide an implementation at //github.com/deepmind/understanding_deep_generative_models_with_generalized_empirical_likelihood/.

We introduce a novel method for the rigorous quantitative evaluation of online algorithms that relaxes the "radical worst-case" perspective of classic competitive analysis. In contrast to prior work, our method, referred to as randomly infused advice (RIA), does not make any probabilistic assumptions about the input sequence and does not rely on the development of designated online algorithms. Rather, it can be applied to existing online randomized algorithms, introducing a means to evaluate their performance in scenarios that lie outside the radical worst-case regime. More concretely, an online algorithm ALG with RIA benefits from pieces of advice generated by an omniscient but not entirely reliable oracle. The crux of the new method is that the advice is provided to ALG by writing it into the buffer B from which ALG normally reads its random bits, hence allowing us to augment it through a very simple and non-intrusive interface. The (un)reliability of the oracle is captured via a parameter 0 {\le} {\alpha} {\le} 1 that determines the probability (per round) that the advice is successfully infused by the oracle; if the advice is not infused, which occurs with probability 1 - {\alpha}, then the buffer B contains fresh random bits (as in the classic online setting). The applicability of the new RIA method is demonstrated by applying it to three extensively studied online problems: paging, uniform metrical task systems, and online set cover. For these problems, we establish new upper bounds on the competitive ratio of classic online algorithms that improve as the infusion parameter {\alpha} increases. These are complemented with (often tight) lower bounds on the competitive ratio of online algorithms with RIA for the three problems.

Although dynamic games provide a rich paradigm for modeling agents' interactions, solving these games for real-world applications is often challenging. Many real-world interactive settings involve general nonlinear state and input constraints that couple agents' decisions with one another. In this work, we develop an efficient and fast planner for interactive trajectory optimization in constrained setups using a constrained game-theoretical framework. Our key insight is to leverage the special structure of agents' objective and constraint functions that are common in multi-agent interactions for fast and reliable planning. More precisely, we identify the structure of agents' cost and constraint functions under which the resulting dynamic game is an instance of a constrained dynamic potential game. Constrained dynamic potential games are a class of games for which instead of solving a set of coupled constrained optimal control problems, a constrained Nash equilibrium, i.e. a Generalized Nash equilibrium, can be found by solving a single constrained optimal control problem. This simplifies constrained interactive trajectory optimization significantly. We compare the performance of our method in a navigation setup involving four planar agents and show that our method is on average 20 times faster than the state-of-the-art. We further provide experimental validation of our proposed method in a navigation setup involving two quadrotors carrying a rigid object while avoiding collisions with two humans.

In recent years, the development of large pretrained language models, such as BERT and GPT, significantly improved information extraction systems on various tasks, including relation classification. State-of-the-art systems are highly accurate on scientific benchmarks. A lack of explainability is currently a complicating factor in many real-world applications. Comprehensible systems are necessary to prevent biased, counterintuitive, or harmful decisions. We introduce semantic extents, a concept to analyze decision patterns for the relation classification task. Semantic extents are the most influential parts of texts concerning classification decisions. Our definition allows similar procedures to determine semantic extents for humans and models. We provide an annotation tool and a software framework to determine semantic extents for humans and models conveniently and reproducibly. Comparing both reveals that models tend to learn shortcut patterns from data. These patterns are hard to detect with current interpretability methods, such as input reductions. Our approach can help detect and eliminate spurious decision patterns during model development. Semantic extents can increase the reliability and security of natural language processing systems. Semantic extents are an essential step in enabling applications in critical areas like healthcare or finance. Moreover, our work opens new research directions for developing methods to explain deep learning models.

The problem of bandit with graph feedback generalizes both the multi-armed bandit (MAB) problem and the learning with expert advice problem by encoding in a directed graph how the loss vector can be observed in each round of the game. The mini-max regret is closely related to the structure of the feedback graph and their connection is far from being fully understood. We propose a new algorithmic framework for the problem based on a partition of the feedback graph. Our analysis reveals the interplay between various parts of the graph by decomposing the regret to the sum of the regret caused by small parts and the regret caused by their interaction. As a result, our algorithm can be viewed as an interpolation and generalization of the optimal algorithms for MAB and learning with expert advice. Our framework unifies previous algorithms for both strongly observable graphs and weakly observable graphs, resulting in improved and optimal regret bounds on a wide range of graph families including graphs of bounded degree and strongly observable graphs with a few corrupted arms.

Fine-tuning language models in a downstream task is the standard approach for many state-of-the-art methodologies in the field of NLP. However, when the distribution between the source task and target task drifts, \textit{e.g.}, conversational environments, these gains tend to be diminished. This article proposes a sequence of pre-training steps (a curriculum) guided by "data hacking" and grammar analysis that allows further gradual adaptation between pre-training distributions. In our experiments, we acquire a considerable improvement from our method compared to other known pre-training approaches for the MultiWoZ task.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

Automatically creating the description of an image using any natural languages sentence like English is a very challenging task. It requires expertise of both image processing as well as natural language processing. This paper discuss about different available models for image captioning task. We have also discussed about how the advancement in the task of object recognition and machine translation has greatly improved the performance of image captioning model in recent years. In addition to that we have discussed how this model can be implemented. In the end, we have also evaluated the performance of model using standard evaluation matrices.

北京阿比特科技有限公司