Relating speech to EEG holds considerable importance but is challenging. In this study, a deep convolutional network was employed to extract spatiotemporal features from EEG data. Self-supervised speech representation and contextual text embedding were used as speech features. Contrastive learning was used to relate EEG features to speech features. The experimental results demonstrate the benefits of using self-supervised speech representation and contextual text embedding. Through feature fusion and model ensemble, an accuracy of 60.29% was achieved, and the performance was ranked as No.2 in Task 1 of the Auditory EEG Challenge (ICASSP 2024). The code to implement our work is available on Github: //github.com/bobwangPKU/EEG-Stimulus-Match-Mismatch.
Predicting the mechanics of large structural networks, such as beam-based architected materials, requires a multiscale computational strategy that preserves information about the discrete structure while being applicable to large assemblies of struts. Especially the fracture properties of such beam lattices necessitate a two-scale modeling strategy, since the fracture toughness depends on discrete beam failure events, while the application of remote loads requires large simulation domains. As classical homogenization techniques fail in the absence of a separation of scales at the crack tip, we present a concurrent multiscale technique: a fully-nonlocal quasicontinuum (QC) multi-lattice formulation for beam networks, based on a conforming mesh. Like the original atomistic QC formulation, we maintain discrete resolution where needed (such as around a crack tip) while efficiently coarse-graining in the remaining simulation domain. A key challenge is a suitable model in the coarse-grained domain, where classical QC uses affine interpolations. This formulation fails in bending-dominated lattices, as it overconstrains the lattice by preventing bending without stretching of beams. Therefore, we here present a beam QC formulation based on mixed-order interpolation in the coarse-grained region -- combining the efficiency of linear interpolation where possible with the accuracy advantages of quadratic interpolation where needed. This results in a powerful computational framework, which, as we demonstrate through our validation and benchmark examples, overcomes the deficiencies of previous QC formulations and enables, e.g., the prediction of the fracture toughness and the diverse nature of stress distributions of stretching- and bending-dominated beam lattices in two and three dimensions.
Causal generative modelling is gaining interest in medical imaging due to its ability to answer interventional and counterfactual queries. Most work focuses on generating counterfactual images that look plausible, using auxiliary classifiers to enforce effectiveness of simulated interventions. We investigate pitfalls in this approach, discovering the issue of attribute amplification, where unrelated attributes are spuriously affected during interventions, leading to biases across protected characteristics and disease status. We show that attribute amplification is caused by the use of hard labels in the counterfactual training process and propose soft counterfactual fine-tuning to mitigate this issue. Our method substantially reduces the amplification effect while maintaining effectiveness of generated images, demonstrated on a large chest X-ray dataset. Our work makes an important advancement towards more faithful and unbiased causal modelling in medical imaging.
We study general coordinate-wise MCMC schemes (such as Metropolis-within-Gibbs samplers), which are commonly used to fit Bayesian non-conjugate hierarchical models. We relate their convergence properties to the ones of the corresponding (potentially not implementable) Gibbs sampler through the notion of conditional conductance. This allows us to study the performances of popular Metropolis-within-Gibbs schemes for non-conjugate hierarchical models, in high-dimensional regimes where both number of datapoints and parameters increase. Given random data-generating assumptions, we establish dimension-free convergence results, which are in close accordance with numerical evidences. Applications to Bayesian models for binary regression with unknown hyperparameters and discretely observed diffusions are also discussed. Motivated by such statistical applications, auxiliary results of independent interest on approximate conductances and perturbation of Markov operators are provided.
In many communication contexts, the capabilities of the involved actors cannot be known beforehand, whether it is a cell, a plant, an insect, or even a life form unknown to Earth. Regardless of the recipient, the message space and time scale could be too fast, too slow, too large, or too small and may never be decoded. Therefore, it pays to devise a way to encode messages agnostic of space and time scales. We propose the use of fractal functions as self-executable infinite-frequency carriers for sending messages, given their properties of structural self-similarity and scale invariance. We call it `fractal messaging'. Starting from a spatial embedding, we introduce a framework for a space-time scale-free messaging approach to this challenge. When considering a space and time-agnostic framework for message transmission, it would be interesting to encode a message such that it could be decoded at several spatio-temporal scales. Hence, the core idea of the framework proposed herein is to encode a binary message as waves along infinitely many frequencies (in power-like distributions) and amplitudes, transmit such a message, and then decode and reproduce it. To do so, the components of the Weierstrass function, a known fractal, are used as carriers of the message. Each component will have its amplitude modulated to embed the binary stream, allowing for a space-time-agnostic approach to messaging.
The well-conditioned multi-product formula (MPF), proposed by [Low, Kliuchnikov, and Wiebe, 2019], is a simple high-order time-independent Hamiltonian simulation algorithm that implements a linear combination of standard product formulas of low order. While the MPF aims to simultaneously exploit commutator scaling among Hamiltonians and achieve near-optimal time and precision dependence, its lack of a rigorous error bound on the nested commutators renders its practical advantage ambiguous. In this work, we conduct a rigorous complexity analysis of the well-conditioned MPF, demonstrating explicit commutator scaling and near-optimal time and precision dependence at the same time. Using our improved complexity analysis, we present several applications of practical interest where the MPF based on a second-order product formula can achieve a polynomial speedup in both system size and evolution time, as well as an exponential speedup in precision, compared to second-order and even higher-order product formulas. Compared to post-Trotter methods, the MPF based on a second-order product formula can achieve polynomially better scaling in system size, with only poly-logarithmic overhead in evolution time and precision.
The exponential growth in scale and relevance of social networks enable them to provide expansive insights. Predicting missing links in social networks efficiently can help in various modern-day business applications ranging from generating recommendations to influence analysis. Several categories of solutions exist for the same. Here, we explore various feature extraction techniques to generate representations of nodes and edges in a social network that allow us to predict missing links. We compare the results of using ten feature extraction techniques categorized across Structural embeddings, Neighborhood-based embeddings, Graph Neural Networks, and Graph Heuristics, followed by modeling with ensemble classifiers and custom Neural Networks. Further, we propose combining heuristic-based features and learned representations that demonstrate improved performance for the link prediction task on social network datasets. Using this method to generate accurate recommendations for many applications is a matter of further study that appears very promising. The code for all the experiments has been made public.
The development of techniques that can be used to analyze and detect animal behavior is a crucial activity for the livestock sector, as it is possible to monitor the stress and animal welfare and contributes to decision making in the farm. Thus, the development of applications can assist breeders in making decisions to improve production performance and reduce costs, once the animal behavior is analyzed by humans and this can lead to susceptible errors and time consumption. Aggressiveness in pigs is an example of behavior that is studied to reduce its impact through animal classification and identification. However, this process is laborious and susceptible to errors, which can be reduced through automation by visually classifying videos captured in controlled environment. The captured videos can be used for training and, as a result, for classification through computer vision and artificial intelligence, employing neural network techniques. The main techniques utilized in this study are variants of transformers: STAM, TimeSformer, and ViViT, as well as techniques using convolutions, such as ResNet3D2, Resnet(2+1)D, and CnnLstm. These techniques were employed for pig video classification with the objective of identifying aggressive and non-aggressive behaviors. In this work, various techniques were compared to analyze the contribution of using transformers, in addition to the effectiveness of the convolution technique in video classification. The performance was evaluated using accuracy, precision, and recall. The TimerSformer technique showed the best results in video classification, with median accuracy of 0.729.
Conformal inference is a popular tool for constructing prediction intervals (PI). We consider here the scenario of post-selection/selective conformal inference, that is PIs are reported only for individuals selected from an unlabeled test data. To account for multiplicity, we develop a general split conformal framework to construct selective PIs with the false coverage-statement rate (FCR) control. We first investigate the Benjamini and Yekutieli (2005)'s FCR-adjusted method in the present setting, and show that it is able to achieve FCR control but yields uniformly inflated PIs. We then propose a novel solution to the problem, named as Selective COnditional conformal Predictions (SCOP), which entails performing selection procedures on both calibration set and test set and construct marginal conformal PIs on the selected sets by the aid of conditional empirical distribution obtained by the calibration set. Under a unified framework and exchangeable assumptions, we show that the SCOP can exactly control the FCR. More importantly, we provide non-asymptotic miscoverage bounds for a general class of selection procedures beyond exchangeablity and discuss the conditions under which the SCOP is able to control the FCR. As special cases, the SCOP with quantile-based selection or conformal p-values-based multiple testing procedures enjoys valid coverage guarantee under mild conditions. Numerical results confirm the effectiveness and robustness of SCOP in FCR control and show that it achieves more narrowed PIs over existing methods in many settings.
Industrial projects rely heavily on lengthy, complex specification documents, making tedious manual extraction of structured information a major bottleneck. This paper introduces an innovative approach to automate this process, leveraging the capabilities of two cutting-edge AI models: Donut, a model that extracts information directly from scanned documents without OCR, and OpenAI GPT-3.5 Turbo, a robust large language model. The proposed methodology is initiated by acquiring the table of contents (ToCs) from construction specification documents and subsequently structuring the ToCs text into JSON data. Remarkable accuracy is achieved, with Donut reaching 85% and GPT-3.5 Turbo reaching 89% in effectively organizing the ToCs. This landmark achievement represents a significant leap forward in document indexing, demonstrating the immense potential of AI to automate information extraction tasks across diverse document types, boosting efficiency and liberating critical resources in various industries.
Image deraining have have gained a great deal of attention in order to address the challenges posed by the effects of harsh weather conditions on visual tasks. While convolutional neural networks (CNNs) are popular, their limitations in capturing global information may result in ineffective rain removal. Transformer-based methods with self-attention mechanisms have improved, but they tend to distort high-frequency details that are crucial for image fidelity. To solve this problem, we propose the Gabor-guided tranformer (Gabformer) for single image deraining. The focus on local texture features is enhanced by incorporating the information processed by the Gabor filter into the query vector, which also improves the robustness of the model to noise due to the properties of the filter. Extensive experiments on the benchmarks demonstrate that our method outperforms state-of-the-art approaches.