亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Voice cloning is a prominent feature in personalized speech interfaces. A neural vocal cloning system can mimic someone's voice using just a few audio samples. Both speaker encoding and speaker adaptation are topics of research in the field of voice cloning. Speaker adaptation relies on fine-tuning a multi-speaker generative model, which involves training a separate model to infer a new speaker embedding used for speaker encoding. Both methods can achieve excellent performance, even with a small number of cloning audios, in terms of the speech's naturalness and similarity to the original speaker. Speaker encoding approaches are more appropriate for low-resource deployment since they require significantly less memory and have a faster cloning time than speaker adaption, which can offer slightly greater naturalness and similarity. The main goal is to create a vocal cloning system that produces audio output with a Nepali accent or that sounds like Nepali. For the further advancement of TTS, the idea of transfer learning was effectively used to address several issues that were encountered in the development of this system, including the poor audio quality and the lack of available data.

相關內容

遷移學習(Transfer Learning)是一種機器學習方法,是把一個領域(即源領域)的知識,遷移到另外一個領域(即目標領域),使得目標領域能夠取得更好的學習效果。遷移學習(TL)是機器學習(ML)中的一個研究問題,著重于存儲在解決一個問題時獲得的知識并將其應用于另一個但相關的問題。例如,在學習識別汽車時獲得的知識可以在嘗試識別卡車時應用。盡管這兩個領域之間的正式聯系是有限的,但這一領域的研究與心理學文獻關于學習轉移的悠久歷史有關。從實踐的角度來看,為學習新任務而重用或轉移先前學習的任務中的信息可能會顯著提高強化學習代理的樣本效率。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Video depth estimation aims to infer temporally consistent depth. One approach is to finetune a single-image model on each video with geometry constraints, which proves inefficient and lacks robustness. An alternative is learning to enforce consistency from data, which requires well-designed models and sufficient video depth data. To address both challenges, we introduce NVDS+ that stabilizes inconsistent depth estimated by various single-image models in a plug-and-play manner. We also elaborate a large-scale Video Depth in the Wild (VDW) dataset, which contains 14,203 videos with over two million frames, making it the largest natural-scene video depth dataset. Additionally, a bidirectional inference strategy is designed to improve consistency by adaptively fusing forward and backward predictions. We instantiate a model family ranging from small to large scales for different applications. The method is evaluated on VDW dataset and three public benchmarks. To further prove the versatility, we extend NVDS+ to video semantic segmentation and several downstream applications like bokeh rendering, novel view synthesis, and 3D reconstruction. Experimental results show that our method achieves significant improvements in consistency, accuracy, and efficiency. Our work serves as a solid baseline and data foundation for learning-based video depth estimation. Code and dataset are available at: //github.com/RaymondWang987/NVDS

Recent music generation methods based on transformers have a context window of up to a minute. The music generated by these methods are largely unstructured beyond the context window. With a longer context window, learning long scale structures from musical data is a prohibitively challenging problem. This paper proposes integrating a text-to-music model with a large language model to generate music with form. We discuss our solutions to the challenges of such integration. The experimental results show that the proposed method can generate 2.5-minute-long music that is highly structured, strongly organized, and cohesive.

Optimizing doses for multiple indications is challenging. The pooled approach of finding a single optimal biological dose (OBD) for all indications ignores that dose-response or dose-toxicity curves may differ between indications, resulting in varying OBDs. Conversely, indication-specific dose optimization often requires a large sample size. To address this challenge, we propose a Randomized two-stage basket trial design that Optimizes doses in Multiple Indications (ROMI). In stage 1, for each indication, response and toxicity are evaluated for a high dose, which may be a previously obtained MTD, with a rule that stops accrual to indications where the high dose is unsafe or ineffective. Indications not terminated proceed to stage 2, where patients are randomized between the high dose and a specified lower dose. A latent-cluster Bayesian hierarchical model is employed to borrow information between indications, while considering the potential heterogeneity of OBD across indications. Indication-specific utilities are used to quantify response-toxicity trade-offs. At the end of stage 2, for each indication with at least one acceptable dose, the dose with highest posterior mean utility is selected as optimal. Two versions of ROMI are presented, one using only stage 2 data for dose optimization and the other optimizing doses using data from both stages. Simulations show that both versions have desirable operating characteristics compared to designs that either ignore indications or optimize dose independently for each indication.

Recurrent neural networks (RNNs) hold immense potential for computations due to their Turing completeness and sequential processing capabilities, yet existing methods for their training encounter efficiency challenges. Backpropagation through time (BPTT), the prevailing method, extends the backpropagation (BP) algorithm by unrolling the RNN over time. However, this approach suffers from significant drawbacks, including the need to interleave forward and backward phases and store exact gradient information. Furthermore, BPTT has been shown to struggle to propagate gradient information for long sequences, leading to vanishing gradients. An alternative strategy to using gradient-based methods like BPTT involves stochastically approximating gradients through perturbation-based methods. This learning approach is exceptionally simple, necessitating only forward passes in the network and a global reinforcement signal as feedback. Despite its simplicity, the random nature of its updates typically leads to inefficient optimization, limiting its effectiveness in training neural networks. In this study, we present a new approach to perturbation-based learning in RNNs whose performance is competitive with BPTT, while maintaining the inherent advantages over gradient-based learning. To this end, we extend the recently introduced activity-based node perturbation (ANP) method to operate in the time domain, leading to more efficient learning and generalization. We subsequently conduct a range of experiments to validate our approach. Our results show similar performance, convergence time and scalability compared to BPTT, strongly outperforming standard node and weight perturbation methods. These findings suggest that perturbation-based learning methods offer a versatile alternative to gradient-based methods for training RNNs which can be ideally suited for neuromorphic computing applications

Diffusion models have revolted the field of text-to-image generation recently. The unique way of fusing text and image information contributes to their remarkable capability of generating highly text-related images. From another perspective, these generative models imply clues about the precise correlation between words and pixels. In this work, a simple but effective method is proposed to utilize the attention mechanism in the denoising network of text-to-image diffusion models. Without re-training nor inference-time optimization, the semantic grounding of phrases can be attained directly. We evaluate our method on Pascal VOC 2012 and Microsoft COCO 2014 under weakly-supervised semantic segmentation setting and our method achieves superior performance to prior methods. In addition, the acquired word-pixel correlation is found to be generalizable for the learned text embedding of customized generation methods, requiring only a few modifications. To validate our discovery, we introduce a new practical task called "personalized referring image segmentation" with a new dataset. Experiments in various situations demonstrate the advantages of our method compared to strong baselines on this task. In summary, our work reveals a novel way to extract the rich multi-modal knowledge hidden in diffusion models for segmentation.

AI foundation models have recently demonstrated impressive capabilities across a wide range of tasks. Fine-tuning (FT) is a method of customizing a pre-trained AI foundation model by further training it on a smaller, targeted dataset. In this paper, we initiate the study of the Privacy-Preserving Parameter-Efficient FT (P3EFT) framework, which can be viewed as the intersection of Parameter-Efficient FT (PEFT) and Privacy-Preserving FT (PPFT). PEFT modifies only a small subset of the model's parameters to achieve FT (i.e., adapting a pre-trained model to a specific dataset), while PPFT uses privacy-preserving technologies to protect the confidentiality of the model during the FT process. There have been many studies on PEFT or PPFT but very few on their fusion, which motivates our work on P3EFT to achieve both parameter efficiency and model privacy. To exemplify our P3EFT, we present the PrivTuner scheme, which incorporates Fully Homomorphic Encryption (FHE) enabled privacy protection into LoRA (short for ``Low-Rank Adapter''). Intuitively speaking, PrivTuner allows the model owner and the external data owners to collaboratively implement PEFT with encrypted data. After describing PrivTuner in detail, we further investigate its energy consumption and privacy protection. Then, we consider a PrivTuner system over wireless communications and formulate a joint optimization problem to adaptively minimize energy while maximizing privacy protection, with the optimization variables including FDMA bandwidth allocation, wireless transmission power, computational resource allocation, and privacy protection. A resource allocation algorithm is devised to solve the problem. Experiments demonstrate that our algorithm can significantly reduce energy consumption while adapting to different privacy requirements.

In autonomous driving, the most challenging scenarios can only be detected within their temporal context. Most video anomaly detection approaches focus either on surveillance or traffic accidents, which are only a subfield of autonomous driving. We present HF$^2$-VAD$_{AD}$, a variation of the HF$^2$-VAD surveillance video anomaly detection method for autonomous driving. We learn a representation of normality from a vehicle's ego perspective and evaluate pixel-wise anomaly detections in rare and critical scenarios.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司