亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We give the first polynomial-time algorithm to estimate the mean of a $d$-variate probability distribution with bounded covariance from $\tilde{O}(d)$ independent samples subject to pure differential privacy. Prior algorithms for this problem either incur exponential running time, require $\Omega(d^{1.5})$ samples, or satisfy only the weaker concentrated or approximate differential privacy conditions. In particular, all prior polynomial-time algorithms require $d^{1+\Omega(1)}$ samples to guarantee small privacy loss with "cryptographically" high probability, $1-2^{-d^{\Omega(1)}}$, while our algorithm retains $\tilde{O}(d)$ sample complexity even in this stringent setting. Our main technique is a new approach to use the powerful Sum of Squares method (SoS) to design differentially private algorithms. SoS proofs to algorithms is a key theme in numerous recent works in high-dimensional algorithmic statistics -- estimators which apparently require exponential running time but whose analysis can be captured by low-degree Sum of Squares proofs can be automatically turned into polynomial-time algorithms with the same provable guarantees. We demonstrate a similar proofs to private algorithms phenomenon: instances of the workhorse exponential mechanism which apparently require exponential time but which can be analyzed with low-degree SoS proofs can be automatically turned into polynomial-time differentially private algorithms. We prove a meta-theorem capturing this phenomenon, which we expect to be of broad use in private algorithm design. Our techniques also draw new connections between differentially private and robust statistics in high dimensions. In particular, viewed through our proofs-to-private-algorithms lens, several well-studied SoS proofs from recent works in algorithmic robust statistics directly yield key components of our differentially private mean estimation algorithm.

相關內容

We present a differentially private algorithm for releasing the sequence of $k$ elements with the highest counts from a data domain of $d$ elements. The algorithm is a "joint" instance of the exponential mechanism, and its output space consists of all $O(d^k)$ length-$k$ sequences. Our main contribution is a method to sample this exponential mechanism in time $O(dk\log(k) + d\log(d))$ and space $O(dk)$. Experiments show that this approach outperforms existing pure differential privacy methods and improves upon even approximate differential privacy methods for moderate $k$.

Wasserstein gradient flow has emerged as a promising approach to solve optimization problems over the space of probability distributions. A recent trend is to use the well-known JKO scheme in combination with input convex neural networks to numerically implement the proximal step. The most challenging step, in this setup, is to evaluate functions involving density explicitly, such as entropy, in terms of samples. This paper builds on the recent works with a slight but crucial difference: we propose to utilize a variational formulation of the objective function formulated as maximization over a parametric class of functions. Theoretically, the proposed variational formulation allows the construction of gradient flows directly for empirical distributions with a well-defined and meaningful objective function. Computationally, this approach replaces the computationally expensive step in existing methods, to handle objective functions involving density, with inner loop updates that only require a small batch of samples and scale well with the dimension. The performance and scalability of the proposed method are illustrated with the aid of several numerical experiments involving high-dimensional synthetic and real datasets.

This paper considers the problem of measure estimation under the barycentric coding model (BCM), in which an unknown measure is assumed to belong to the set of Wasserstein-2 barycenters of a finite set of known measures. Estimating a measure under this model is equivalent to estimating the unknown barycenteric coordinates. We provide novel geometrical, statistical, and computational insights for measure estimation under the BCM, consisting of three main results. Our first main result leverages the Riemannian geometry of Wasserstein-2 space to provide a procedure for recovering the barycentric coordinates as the solution to a quadratic optimization problem assuming access to the true reference measures. The essential geometric insight is that the parameters of this quadratic problem are determined by inner products between the optimal displacement maps from the given measure to the reference measures defining the BCM. Our second main result then establishes an algorithm for solving for the coordinates in the BCM when all the measures are observed empirically via i.i.d. samples. We prove precise rates of convergence for this algorithm -- determined by the smoothness of the underlying measures and their dimensionality -- thereby guaranteeing its statistical consistency. Finally, we demonstrate the utility of the BCM and associated estimation procedures in three application areas: (i) covariance estimation for Gaussian measures; (ii) image processing; and (iii) natural language processing.

We study the overparametrization bounds required for the global convergence of stochastic gradient descent algorithm for a class of one hidden layer feed-forward neural networks, considering most of the activation functions used in practice, including ReLU. We improve the existing state-of-the-art results in terms of the required hidden layer width. We introduce a new proof technique combining nonlinear analysis with properties of random initializations of the network. First, we establish the global convergence of continuous solutions of the differential inclusion being a nonsmooth analogue of the gradient flow for the MSE loss. Second, we provide a technical result (working also for general approximators) relating solutions of the aforementioned differential inclusion to the (discrete) stochastic gradient descent sequences, hence establishing linear convergence towards zero loss for the stochastic gradient descent iterations.

Besides the Laplace distribution and the Gaussian distribution, there are many more probability distributions that are not well-understood in terms of privacy-preserving property -- one of which is the Dirichlet distribution. In this work, we study the inherent privacy of releasing a single draw from a Dirichlet posterior distribution (the Dirichlet posterior sampling). As our main result, we provide a simple privacy guarantee of the Dirichlet posterior sampling with the framework of R\'enyi Differential Privacy (RDP). Consequently, the RDP guarantee allows us to derive a simpler form of the $(\varepsilon,\delta)$-differential privacy guarantee compared to those from the previous work. As an application, we use the RDP guarantee to derive a utility guarantee of the Dirichlet posterior sampling for privately releasing a normalized histogram, which is confirmed by our experimental results. Moreover, we demonstrate that the RDP guarantee can be used to track the privacy loss in Bayesian reinforcement learning.

We analyse the privacy leakage of noisy stochastic gradient descent by modeling R\'enyi divergence dynamics with Langevin diffusions. Inspired by recent work on non-stochastic algorithms, we derive similar desirable properties in the stochastic setting. In particular, we prove that the privacy loss converges exponentially fast for smooth and strongly convex objectives under constant step size, which is a significant improvement over previous DP-SGD analyses. We also extend our analysis to arbitrary sequences of varying step sizes and derive new utility bounds. Last, we propose an implementation and our experiments show the practical utility of our approach compared to classical DP-SGD libraries.

In the storied Colonel Blotto game, two colonels allocate $a$ and $b$ troops, respectively, to $k$ distinct battlefields. A colonel wins a battle if they assign more troops to that particular battle, and each colonel seeks to maximize their total number of victories. Despite the problem's formulation in 1921, the first polynomial-time algorithm to compute Nash equilibrium (NE) strategies for this game was discovered only quite recently. In 2016, \citep{ahmadinejad_dehghani_hajiaghayi_lucier_mahini_seddighin_2019} formulated a breakthrough algorithm to compute NE strategies for the Colonel Blotto game in computational complexity $O(k^{14}\max\{a,b\}^{13})$, receiving substantial media coverage (e.g. \citep{Insider}, \citep{NSF}, \citep{ScienceDaily}). As of this work, this is the only known provably efficient algorithm (to our knowledge) for the Colonel Blotto game with general parameters. In this work, we present the first known algorithm to compute $\eps$-approximate NE strategies in the two-player Colonel Blotto game in runtime $\widetilde{O}(\eps^{-4} k^8 \max\{a,b\})$ for arbitrary settings of these parameters. Moreover, this algorithm is the first known efficient algorithm to compute approximate coarse correlated equilibrium strategies in the multiplayer Colonel Blotto game (when there are $\ell > 2$ colonels) with runtime $\widetilde{O}(\ell \eps^{-4} k^8 \max\{a,b\} + \ell^2 \eps^{-2} k^3 \max\{a,b\})$. Prior to this work, no polynomial-time algorithm was known to compute exact or approximate equilibrium (in any sense) strategies for multiplayer Colonel Blotto with arbitrary parameters. Our algorithm computes these approximate equilibria by implicitly performing multiplicative weights update over the exponentially many strategies available to each player.

The priority model was introduced to capture "greedy-like" algorithms. Motivated by the success of advice complexity in the area of online algorithms, the fixed priority model was extended to include advice, and a reduction-based framework was developed for proving lower bounds on the amount of advice required to achieve certain approximation ratios in this rather powerful model. To capture most of the algorithms that are considered greedy-like, the even stronger model of adaptive priority algorithms is needed. We extend the adaptive priority model to include advice. We modify the reduction-based framework from the fixed priority case to work with the more powerful adaptive priority algorithms, simplifying the proof of correctness and strengthening all previous lower bounds by a factor of two in the process. We also present a purely combinatorial adaptive priority algorithm with advice for Minimum Vertex Cover on triangle-free graphs of maximum degree three. Our algorithm achieves optimality and uses at most 7n/22 bits of advice. No adaptive priority algorithm without advice can achieve optimality without advice, and we prove that an online algorithm with advice needs more than 7n/22 bits of advice to reach optimality. We show connections between exact algorithms and priority algorithms with advice. The branching in branch-and-reduce algorithms can be seen as trying all possible advice strings, and all priority algorithms with advice that achieve optimality define corresponding exact algorithms, priority exact algorithms. Lower bounds on advice-based adaptive algorithms imply lower bounds on running times of exact algorithms designed in this way.

We consider the matrix least squares problem of the form $\| \mathbf{A} \mathbf{X}-\mathbf{B} \|_F^2$ where the design matrix $\mathbf{A} \in \mathbb{R}^{N \times r}$ is tall and skinny with $N \gg r$. We propose to create a sketched version $\| \tilde{\mathbf{A}}\mathbf{X}-\tilde{\mathbf{B}} \|_F^2$ where the sketched matrices $\tilde{\mathbf{A}}$ and $\tilde{\mathbf{B}}$ contain weighted subsets of the rows of $\mathbf{A}$ and $\mathbf{B}$, respectively. The subset of rows is determined via random sampling based on leverage score estimates for each row. We say that the sketched problem is $\epsilon$-accurate if its solution $\tilde{\mathbf{X}}_{\rm \text{opt}} = \text{argmin } \| \tilde{\mathbf{A}}\mathbf{X}-\tilde{\mathbf{B}} \|_F^2$ satisfies $\|\mathbf{A}\tilde{\mathbf{X}}_{\rm \text{opt}}-\mathbf{B} \|_F^2 \leq (1+\epsilon) \min \| \mathbf{A}\mathbf{X}-\mathbf{B} \|_F^2$ with high probability. We prove that the number of samples required for an $\epsilon$-accurate solution is $O(r/(\beta \epsilon))$ where $\beta \in (0,1]$ is a measure of the quality of the leverage score estimates.

Train machine learning models on sensitive user data has raised increasing privacy concerns in many areas. Federated learning is a popular approach for privacy protection that collects the local gradient information instead of real data. One way to achieve a strict privacy guarantee is to apply local differential privacy into federated learning. However, previous works do not give a practical solution due to three issues. First, the noisy data is close to its original value with high probability, increasing the risk of information exposure. Second, a large variance is introduced to the estimated average, causing poor accuracy. Last, the privacy budget explodes due to the high dimensionality of weights in deep learning models. In this paper, we proposed a novel design of local differential privacy mechanism for federated learning to address the abovementioned issues. It is capable of making the data more distinct from its original value and introducing lower variance. Moreover, the proposed mechanism bypasses the curse of dimensionality by splitting and shuffling model updates. A series of empirical evaluations on three commonly used datasets, MNIST, Fashion-MNIST and CIFAR-10, demonstrate that our solution can not only achieve superior deep learning performance but also provide a strong privacy guarantee at the same time.

北京阿比特科技有限公司