亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we study the algebraic structure of $(\sigma,\delta)$-polycyclic codes as submodules in the quotient module $S/Sf$, where $S=R[x,\sigma,\delta]$ is the Ore extension, $f\in S$, and $R$ is a finite but not necessarily commutative ring. We establish that the Euclidean duals of $(\sigma,\delta)$-polycyclic codes are $(\sigma,\delta)$-sequential codes. By using $(\sigma,\delta)$-Pseudo Linear Transformation (PLT), we define the annihilator dual of $(\sigma,\delta)$-polycyclic codes. Then, we demonstrate that the annihilator duals of $(\sigma,\delta)$-polycyclic codes maintain their $(\sigma,\delta)$-polycyclic nature. Furthermore, we classify when two $(\sigma,\delta)$-polycyclic codes are Hamming isometrical equivalent. By employing Wedderburn polynomials, we introduce simple-root $(\sigma,\delta)$-polycyclic codes. Subsequently, we define the $(\sigma, \delta)$-Mattson-Solomon transform for this class of codes and we address the problem of decomposing these codes by using the properties of Wedderburn polynomials.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

We revisit the question of whether the strong law of large numbers (SLLN) holds uniformly in a rich family of distributions, culminating in a distribution-uniform generalization of the Marcinkiewicz-Zygmund SLLN. These results can be viewed as extensions of Chung's distribution-uniform SLLN to random variables with uniformly integrable $q^\text{th}$ absolute central moments for $0 < q < 2;\ q \neq 1$. Furthermore, we show that uniform integrability of the $q^\text{th}$ moment is both sufficient and necessary for the SLLN to hold uniformly at the Marcinkiewicz-Zygmund rate of $n^{1/q - 1}$. These proofs centrally rely on distribution-uniform analogues of some familiar almost sure convergence results including the Khintchine-Kolmogorov convergence theorem, Kolmogorov's three-series theorem, a stochastic generalization of Kronecker's lemma, and the Borel-Cantelli lemmas. The non-identically distributed case is also considered.

We explicitly construct the first nontrivial extractors for degree $d \ge 2$ polynomial sources over $\mathbb{F}_2^n$. Our extractor requires min-entropy $k\geq n - \tilde{\Omega}(\sqrt{\log n})$. Previously, no constructions were known, even for min-entropy $k\geq n-1$. A key ingredient in our construction is an input reduction lemma, which allows us to assume that any polynomial source with min-entropy $k$ can be generated by $O(k)$ uniformly random bits. We also provide strong formal evidence that polynomial sources are unusually challenging to extract from, by showing that even our most powerful general purpose extractors cannot handle polynomial sources with min-entropy below $k\geq n-o(n)$. In more detail, we show that sumset extractors cannot even disperse from degree $2$ polynomial sources with min-entropy $k\geq n-O(n/\log\log n)$. In fact, this impossibility result even holds for a more specialized family of sources that we introduce, called polynomial non-oblivious bit-fixing (NOBF) sources. Polynomial NOBF sources are a natural new family of algebraic sources that lie at the intersection of polynomial and variety sources, and thus our impossibility result applies to both of these classical settings. This is especially surprising, since we do have variety extractors that slightly beat this barrier - implying that sumset extractors are not a panacea in the world of seedless extraction.

High-order Hadamard-form entropy stable multidimensional summation-by-parts discretizations of the Euler and compressible Navier-Stokes equations are considerably more expensive than the standard divergence-form discretization. In search of a more efficient entropy stable scheme, we extend the entropy-split method for implementation on unstructured grids and investigate its properties. The main ingredients of the scheme are Harten's entropy functions, diagonal-$ \mathsf{E} $ summation-by-parts operators with diagonal norm matrix, and entropy conservative simultaneous approximation terms (SATs). We show that the scheme is high-order accurate and entropy conservative on periodic curvilinear unstructured grids for the Euler equations. An entropy stable matrix-type interface dissipation operator is constructed, which can be added to the SATs to obtain an entropy stable semi-discretization. Fully-discrete entropy conservation is achieved using a relaxation Runge-Kutta method. Entropy stable viscous SATs, applicable to both the Hadamard-form and entropy-split schemes, are developed for the compressible Navier-Stokes equations. In the absence of heat fluxes, the entropy-split scheme is entropy stable for the compressible Navier-Stokes equations. Local conservation in the vicinity of discontinuities is enforced using an entropy stable hybrid scheme. Several numerical problems involving both smooth and discontinuous solutions are investigated to support the theoretical results. Computational cost comparison studies suggest that the entropy-split scheme offers substantial efficiency benefits relative to Hadamard-form multidimensional SBP-SAT discretizations.

In this paper we develop a classical algorithm of complexity $O(K \, 2^n)$ to simulate parametrized quantum circuits (PQCs) of $n$ qubits, where $K$ is the total number of one-qubit and two-qubit control gates. The algorithm is developed by finding $2$-sparse unitary matrices of order $2^n$ explicitly corresponding to any single-qubit and two-qubit control gates in an $n$-qubit system. Finally, we determine analytical expression of Hamiltonians for any such gate and consequently a local Hamiltonian decomposition of any PQC is obtained. All results are validated with numerical simulations.

Using validated numerical methods, interval arithmetic and Taylor models, we propose a certified predictor-corrector loop for tracking zeros of polynomial systems with a parameter. We provide a Rust implementation which shows tremendous improvement over existing software for certified path tracking.

In this paper we study the Cayley graph $\mathrm{Cay}(S_n,T)$ of the symmetric group $S_n$ generated by a set of transpositions $T$. We show that for $n\geq 5$ the Cayley graph is normal. As a corollary, we show that its automorphism group is a direct product of $S_n$ and the automorphism group of the transposition graph associated to $T$. This provides an affirmative answer to a conjecture raised by Ganesan in arXiv:1703.08109, showing that $\mathrm{Cay}(S_n,T)$ is normal if and only if the transposition graph is not $C_4$ or $K_n$.

A novel H3N3-2$_\sigma$ interpolation approximation for the Caputo fractional derivative of order $\alpha\in(1,2)$ is derived in this paper, which improves the popular L2C formula with (3-$\alpha$)-order accuracy. By an interpolation technique, the second-order accuracy of the truncation error is skillfully estimated. Based on this formula, a finite difference scheme with second-order accuracy both in time and in space is constructed for the initial-boundary value problem of the time fractional hyperbolic equation. It is well known that the coefficients' properties of discrete fractional derivatives are fundamental to the numerical stability of time fractional differential models. We prove the related properties of the coefficients of the H3N3-2$_\sigma$ approximate formula. With these properties, the numerical stability and convergence of the difference scheme are derived immediately by the energy method in the sense of $H^1$-norm. Considering the weak regularity of the solution to the problem at the starting time, a finite difference scheme on the graded meshes based on H3N3-2$_\sigma$ formula is also presented. The numerical simulations are performed to show the effectiveness of the derived finite difference schemes, in which the fast algorithms are employed to speed up the numerical computation.

We consider the problem of approximating a function from $L^2$ by an element of a given $m$-dimensional space $V_m$, associated with some feature map $\varphi$, using evaluations of the function at random points $x_1,\dots,x_n$. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features $\varphi(x_i)$. We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples $n = O(m\log(m))$, that means that the expected $L^2$ error is bounded by a constant times the best approximation error in $L^2$. Also, further assuming that the function is in some normed vector space $H$ continuously embedded in $L^2$, we further prove that the approximation is almost surely bounded by the best approximation error measured in the $H$-norm. This includes the cases of functions from $L^\infty$ or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies.

In the literature, there are many results about permutation polynomials over finite fields. However, very few permutations of vector spaces are constructed although it has been shown that permutations of vector spaces have many applications in cryptography, especially in constructing permutations with low differential and boomerang uniformities. In this paper, motivated by the butterfly structure \cite{perrin2016cryptanalysis} and the work of Qu and Li \cite{qu2023}, we investigate rotatable permutations from $\gf_{2^m}^3$ to itself with $d$-homogenous functions. Based on the theory of equations of low degree, the resultant of polynomials, and some skills of exponential sums, we construct five infinite classes of $3$-homogeneous rotatable permutations from $\gf_{2^m}^3$ to itself, where $m$ is odd. Moreover, we demonstrate that the corresponding permutation polynomials of $\gf_{2^{3m}}$ of our newly constructed permutations of $\gf_{2^m}^3$ are QM-inequivalent to the known ones.

In this paper, for any fixed integer $q>2$, we construct $q$-ary codes correcting a burst of at most $t$ deletions with redundancy $\log n+8\log\log n+o(\log\log n)+\gamma_{q,t}$ bits and near-linear encoding/decoding complexity, where $n$ is the message length and $\gamma_{q,t}$ is a constant that only depends on $q$ and $t$. In previous works there are constructions of such codes with redundancy $\log n+O(\log q\log\log n)$ bits or $\log n+O(t^2\log\log n)+O(t\log q)$. The redundancy of our new construction is independent of $q$ and $t$ in the second term.

北京阿比特科技有限公司