亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, for any fixed integer $q>2$, we construct $q$-ary codes correcting a burst of at most $t$ deletions with redundancy $\log n+8\log\log n+o(\log\log n)+\gamma_{q,t}$ bits and near-linear encoding/decoding complexity, where $n$ is the message length and $\gamma_{q,t}$ is a constant that only depends on $q$ and $t$. In previous works there are constructions of such codes with redundancy $\log n+O(\log q\log\log n)$ bits or $\log n+O(t^2\log\log n)+O(t\log q)$. The redundancy of our new construction is independent of $q$ and $t$ in the second term.

相關內容

Within the framework of Riehl-Shulman's synthetic $(\infty,1)$-category theory, we present a theory of two-sided cartesian fibrations. Central results are several characterizations of the two-sidedness condition \`{a} la Chevalley, Gray, Street, and Riehl-Verity, a two-sided Yoneda Lemma, as well as the proof of several closure properties. Along the way, we also define and investigate a notion of fibered or sliced fibration which is used later to develop the two-sided case in a modular fashion. We also briefly discuss discrete two-sided cartesian fibrations in this setting, corresponding to $(\infty,1)$-distributors. The systematics of our definitions and results closely follows Riehl-Verity's $\infty$-cosmos theory, but formulated internally to Riehl-Shulman's simplicial extension of homotopy type theory. All the constructions and proofs in this framework are by design invariant under homotopy equivalence. Semantically, the synthetic $(\infty,1)$-categories correspond to internal $(\infty,1)$-categories implemented as Rezk objects in an arbitrary given $(\infty,1)$-topos.

In this work, we present 3DCoMPaT$^{++}$, a multimodal 2D/3D dataset with 160 million rendered views of more than 10 million stylized 3D shapes carefully annotated at the part-instance level, alongside matching RGB point clouds, 3D textured meshes, depth maps, and segmentation masks. 3DCoMPaT$^{++}$ covers 41 shape categories, 275 fine-grained part categories, and 293 fine-grained material classes that can be compositionally applied to parts of 3D objects. We render a subset of one million stylized shapes from four equally spaced views as well as four randomized views, leading to a total of 160 million renderings. Parts are segmented at the instance level, with coarse-grained and fine-grained semantic levels. We introduce a new task, called Grounded CoMPaT Recognition (GCR), to collectively recognize and ground compositions of materials on parts of 3D objects. Additionally, we report the outcomes of a data challenge organized at CVPR2023, showcasing the winning method's utilization of a modified PointNet$^{++}$ model trained on 6D inputs, and exploring alternative techniques for GCR enhancement. We hope our work will help ease future research on compositional 3D Vision.

This article introduces new multiplicative updates for nonnegative matrix factorization with the $\beta$-divergence and sparse regularization of one of the two factors (say, the activation matrix). It is well known that the norm of the other factor (the dictionary matrix) needs to be controlled in order to avoid an ill-posed formulation. Standard practice consists in constraining the columns of the dictionary to have unit norm, which leads to a nontrivial optimization problem. Our approach leverages a reparametrization of the original problem into the optimization of an equivalent scale-invariant objective function. From there, we derive block-descent majorization-minimization algorithms that result in simple multiplicative updates for either $\ell_{1}$-regularization or the more "aggressive" log-regularization. In contrast with other state-of-the-art methods, our algorithms are universal in the sense that they can be applied to any $\beta$-divergence (i.e., any value of $\beta$) and that they come with convergence guarantees. We report numerical comparisons with existing heuristic and Lagrangian methods using various datasets: face images, an audio spectrogram, hyperspectral data, and song play counts. We show that our methods obtain solutions of similar quality at convergence (similar objective values) but with significantly reduced CPU times.

We give structural results about bifibrations of (internal) $(\infty,1)$-categories with internal sums. This includes a higher version of Moens' Theorem, characterizing cartesian bifibrations with extensive aka stable and disjoint internal sums over lex bases as Artin gluings of lex functors. We also treat a generalized version of Moens' Theorem due to Streicher which does not require the Beck--Chevalley condition. Furthermore, we show that also in this setting the Moens fibrations can be characterized via a condition due to Zawadowski. Our account overall follows Streicher's presentation of fibered category theory \`{a} la B\'{e}nabou, generalizing the results to the internal, higher-categorical case, formulated in a synthetic setting. Namely, we work inside simplicial homotopy type theory, which has been introduced by Riehl and Shulman as a logical system to reason about internal $(\infty,1)$-categories, interpreted as Rezk objects in any given Grothendieck--Rezk--Lurie $(\infty,1)$-topos.

For a fixed graph $H$, in the graph homomorphism problem, denoted by $Hom(H)$, we are given a graph $G$ and we have to determine whether there exists an edge-preserving mapping $\varphi: V(G) \to V(H)$. Note that $Hom(C_3)$, where $C_3$ is the cycle of length $3$, is equivalent to $3$-Coloring. The question whether $3$-Coloring is polynomial-time solvable on diameter-$2$ graphs is a well-known open problem. In this paper we study the $Hom(C_{2k+1})$ problem on bounded-diameter graphs for $k\geq 2$, so we consider all other odd cycles than $C_3$. We prove that for $k\geq 2$, the $Hom(C_{2k+1})$ problem is polynomial-time solvable on diameter-$(k+1)$ graphs -- note that such a result for $k=1$ would be precisely a polynomial-time algorithm for $3$-Coloring of diameter-$2$ graphs. Furthermore, we give subexponential-time algorithms for diameter-$(k+2)$ and -$(k+3)$ graphs. We complement these results with a lower bound for diameter-$(2k+2)$ graphs -- in this class of graphs the $Hom(C_{2k+1})$ problem is NP-hard and cannot be solved in subexponential-time, unless the ETH fails. Finally, we consider another direction of generalizing $3$-Coloring on diameter-$2$ graphs. We consider other target graphs $H$ than odd cycles but we restrict ourselves to diameter $2$. We show that if $H$ is triangle-free, then $Hom(H)$ is polynomial-time solvable on diameter-$2$ graphs.

This paper considers correlation clustering on unweighted complete graphs. We give a combinatorial algorithm that returns a single clustering solution that is simultaneously $O(1)$-approximate for all $\ell_p$-norms of the disagreement vector; in other words, a combinatorial $O(1)$-approximation of the all-norms objective for correlation clustering. This is the first proof that minimal sacrifice is needed in order to optimize different norms of the disagreement vector. In addition, our algorithm is the first combinatorial approximation algorithm for the $\ell_2$-norm objective, and more generally the first combinatorial algorithm for the $\ell_p$-norm objective when $1 < p < \infty$. It is also faster than all previous algorithms that minimize the $\ell_p$-norm of the disagreement vector, with run-time $O(n^\omega)$, where $O(n^\omega)$ is the time for matrix multiplication on $n \times n$ matrices. When the maximum positive degree in the graph is at most $\Delta$, this can be improved to a run-time of $O(n\Delta^2 \log n)$.

This paper proposes a new framework of Markov $\alpha$-potential games to study Markov games. In this new framework, Markov games are shown to be Markov $\alpha$-potential games, and the existence of an associated $\alpha$-potential function is established. Any optimizer of an $\alpha$-potential function is shown to be an $\alpha$-stationary NE. Two important classes of practically significant Markov games, Markov congestion games and the perturbed Markov team games, are studied via this framework of Markov $\alpha$-potential games, with explicit characterization of an upper bound for $\alpha$ and its relation to game parameters. Additionally, a semi-infinite linear programming based formulation is presented to obtain an upper bound for $\alpha$ for any Markov game. Furthermore, two equilibrium approximation algorithms, namely the projected gradient-ascent algorithm and the sequential maximum improvement algorithm, are presented along with their Nash regret analysis, and corroborated by numerical experiments.

Given a bipartite graph $G(V= (A \cup B),E)$ with $n$ vertices and $m$ edges and a function $b \colon V \to \mathbb{Z}_+$, a $b$-matching is a subset of edges such that every vertex $v \in V$ is incident to at most $b(v)$ edges in the subset. When we are also given edge weights, the Max Weight $b$-Matching problem is to find a $b$-matching of maximum weight, which is a fundamental combinatorial optimization problem with many applications. Extending on the recent work of Zheng and Henzinger (IPCO, 2023) on standard bipartite matching problems, we develop a simple auction algorithm to approximately solve Max Weight $b$-Matching. Specifically, we present a multiplicative auction algorithm that gives a $(1 - \varepsilon)$-approximation in $O(m \varepsilon^{-1} \log \varepsilon^{-1} \log \beta)$ worst case time, where $\beta$ the maximum $b$-value. Although this is a $\log \beta$ factor greater than the current best approximation algorithm by Huang and Pettie (Algorithmica, 2022), it is considerably simpler to present, analyze, and implement.

In this paper, we present a collection of novel and scalable algorithms designed to tackle the challenges inherent in the $k$-clique densest subgraph problem (\kcdsp) within network analysis. We propose \psctl, a novel algorithm based on the Frank-Wolfe approach for addressing \kcdsp, effectively solving a distinct convex programming problem. \textcolor{black}{\psctl is able to approximate \kcdsp with near optimal guarantees.} The notable advantage of \psctl lies in its time complexity, which is independent of the count of $k$-cliques, resulting in remarkable efficiency in practical applications. Additionally, we present \spath, a sampling-based algorithm with the capability to handle networks on an unprecedented scale, reaching up to $1.8\times 10^9$ edges. By leveraging the \ccpath algorithm as a uniform $k$-clique sampler, \spath ensures the efficient processing of large-scale network data, accompanied by a detailed analysis of accuracy guarantees. Together, these contributions represent a significant advancement in the field of $k$-clique densest subgraph discovery. In experimental evaluations, our algorithms demonstrate orders of magnitude faster performance compared to the current state-of-the-art solutions.

We propose CAPGrasp, an $\mathbb{R}^3\times \text{SO(2)-equivariant}$ 6-DoF continuous approach-constrained generative grasp sampler. It includes a novel learning strategy for training CAPGrasp that eliminates the need to curate massive conditionally labeled datasets and a constrained grasp refinement technique that improves grasp poses while respecting the grasp approach directional constraints. The experimental results demonstrate that CAPGrasp is more than three times as sample efficient as unconstrained grasp samplers while achieving up to 38% grasp success rate improvement. CAPGrasp also achieves 4-10% higher grasp success rates than constrained but noncontinuous grasp samplers. Overall, CAPGrasp is a sample-efficient solution when grasps must originate from specific directions, such as grasping in confined spaces.

北京阿比特科技有限公司