We discuss the relation between the statistical question of inadmissibility and the probabilistic question of transience. Brown (1971) proved the mathematical link between the admissibility of the mean of a Gaussian distribution and the recurrence of a Brownian motion, which holds for $\mathbb{R}^{2}$ but not for $\mathbb{R}^{3}$ in Euclidean space. We extend this result to symmetric, non-Gaussian distributions, without assuming the existence of moments. As an application, we prove that the relation between the inadmissibility of the predictive density of a Cauchy distribution under a uniform prior and the transience of the Cauchy process differs from dimensions $\mathbb{R}^{1}$ to $\mathbb{R}^{2}$. We also show that there exists an extreme model that is inadmissible in $\mathbb{R}^{1}$.
The roll out of 5G has been mainly characterized by its distinct support for vertical industries, especially manufacturing. Leveraging synergies among these two worlds, namely production facilities and network systems, is a fundamental aspect to enable flexibility and economic viability in future factories. This work highlights the potential for intelligent networking and advanced machine learning-based solutions in 5G-and-beyond systems in the context of Industry 4.0 and flexible manufacturing. The intersection thereof allows to create versatile machines and dynamic communication networks that can adapt to changes in the manufacturing process, factory layout and communication environment, supporting real-time interaction between humans, machines, and systems. We present a vision and corresponding framework by introducing the network-aware and production-aware principles, outlining results achieved in this context and summarizing them into three key use cases. Finally, we discuss a selection of remaining open challenges in private networks as well as give an outlook on future 6G research directions.
Reinforcement Learning (RL) systems can be complex and non-interpretable, making it challenging for non-AI experts to understand or intervene in their decisions. This is due in part to the sequential nature of RL in which actions are chosen because of future rewards. However, RL agents discard the qualitative features of their training, making it difficult to recover user-understandable information for "why" an action is chosen. We propose a technique, Experiential Explanations, to generate counterfactual explanations by training influence predictors along with the RL policy. Influence predictors are models that learn how sources of reward affect the agent in different states, thus restoring information about how the policy reflects the environment. A human evaluation study revealed that participants presented with experiential explanations were better able to correctly guess what an agent would do than those presented with other standard types of explanation. Participants also found that experiential explanations are more understandable, satisfying, complete, useful, and accurate. The qualitative analysis provides insights into the factors of experiential explanations that are most useful.
Deploying an algorithmically informed policy is a significant intervention in the structure of society. As is increasingly acknowledged, predictive algorithms have performative effects: using them can shift the distribution of social outcomes away from the one on which the algorithms were trained. Algorithmic fairness research is usually motivated by the worry that these performative effects will exacerbate the structural inequalities that gave rise to the training data. However, standard retrospective fairness methodologies are ill-suited to predict these effects. They impose static fairness constraints that hold after the predictive algorithm is trained, but before it is deployed and, therefore, before performative effects have had a chance to kick in. However, satisfying static fairness criteria after training is not sufficient to avoid exacerbating inequality after deployment. Addressing the fundamental worry that motivates algorithmic fairness requires explicitly comparing the change in relevant structural inequalities before and after deployment. We propose a prospective methodology for estimating this post-deployment change from pre-deployment data and knowledge about the algorithmic policy. That requires a strategy for distinguishing between, and accounting for, different kinds of performative effects. In this paper, we focus on the algorithmic effect on the causally downstream outcome variable. Throughout, we are guided by an application from public administration: the use of algorithms to (1) predict who among the recently unemployed will stay unemployed for the long term and (2) targeting them with labor market programs. We illustrate our proposal by showing how to predict whether such policies will exacerbate gender inequalities in the labor market.
With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.
This PhD thesis contains several contributions to the field of statistical causal modeling. Statistical causal models are statistical models embedded with causal assumptions that allow for the inference and reasoning about the behavior of stochastic systems affected by external manipulation (interventions). This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust (out-of-distribution generalizing) prediction methods. We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization. Our proposed estimators show, in certain settings, mean squared error improvements compared to both canonical and state-of-the-art estimators. We show that recent research on distributionally robust prediction methods has connections to well-studied estimators from econometrics. This connection leads us to prove that general K-class estimators possess distributional robustness properties. We, furthermore, propose a general framework for distributional robustness with respect to intervention-induced distributions. In this framework, we derive sufficient conditions for the identifiability of distributionally robust prediction methods and present impossibility results that show the necessity of several of these conditions. We present a new structure learning method applicable in additive noise models with directed trees as causal graphs. We prove consistency in a vanishing identifiability setup and provide a method for testing substructure hypotheses with asymptotic family-wise error control that remains valid post-selection. Finally, we present heuristic ideas for learning summary graphs of nonlinear time-series models.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.
Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.
Graphical causal inference as pioneered by Judea Pearl arose from research on artificial intelligence (AI), and for a long time had little connection to the field of machine learning. This article discusses where links have been and should be established, introducing key concepts along the way. It argues that the hard open problems of machine learning and AI are intrinsically related to causality, and explains how the field is beginning to understand them.
We study the problem of textual relation embedding with distant supervision. To combat the wrong labeling problem of distant supervision, we propose to embed textual relations with global statistics of relations, i.e., the co-occurrence statistics of textual and knowledge base relations collected from the entire corpus. This approach turns out to be more robust to the training noise introduced by distant supervision. On a popular relation extraction dataset, we show that the learned textual relation embedding can be used to augment existing relation extraction models and significantly improve their performance. Most remarkably, for the top 1,000 relational facts discovered by the best existing model, the precision can be improved from 83.9% to 89.3%.