亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Task-oriented semantic communication systems have emerged as a promising approach to achieving efficient and intelligent data transmission, where only information relevant to a specific task is communicated. However, existing methods struggle to fully disentangle task-relevant and task-irrelevant information, leading to privacy concerns and subpar performance. To address this, we propose an information-bottleneck method, named CLAD (contrastive learning and adversarial disentanglement). CLAD leverages contrastive learning to effectively capture task-relevant features while employing adversarial disentanglement to discard task-irrelevant information. Additionally, due to the lack of reliable and reproducible methods to gain insight into the informativeness and minimality of the encoded feature vectors, we introduce a new technique to compute the information retention index (IRI), a comparative metric used as a proxy for the mutual information between the encoded features and the input, reflecting the minimality of the encoded features. The IRI quantifies the minimality and informativeness of the encoded feature vectors across different task-oriented communication techniques. Our extensive experiments demonstrate that CLAD outperforms state-of-the-art baselines in terms of task performance, privacy preservation, and IRI. CLAD achieves a predictive performance improvement of around 2.5-3%, along with a 77-90% reduction in IRI and a 57-76% decrease in adversarial accuracy.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 值域 · Material Design · Extensibility · Vision ·
2024 年 12 月 11 日

Physics-based differentiable rendering (PBDR) has become an efficient method in computer vision, graphics, and machine learning for addressing an array of inverse problems. PBDR allows patterns to be generated from perceptions which can be applied to enhance object attributes like geometry, substances, and lighting by adding physical models of light propagation and materials interaction. Due to these capabilities, distinguished rendering has been employed in a wider range of sectors such as autonomous navigation, scene reconstruction, and material design. We provide an extensive overview of PBDR techniques in this study, emphasizing their creation, effectiveness, and limitations while managing inverse situations. We demonstrate modern techniques and examine their value in everyday situations.

By generating new yet effective data, data augmentation has become a promising method to mitigate the data sparsity problem in sequential recommendation. Existing works focus on augmenting the original data but rarely explore the issue of imbalanced relevance and diversity for augmented data, leading to semantic drift problems or limited performance improvements. In this paper, we propose a novel Balanced data Augmentation Plugin for Sequential Recommendation (BASRec) to generate data that balance relevance and diversity. BASRec consists of two modules: Single-sequence Augmentation and Cross-sequence Augmentation. The former leverages the randomness of the heuristic operators to generate diverse sequences for a single user, after which the diverse and the original sequences are fused at the representation level to obtain relevance. Further, we devise a reweighting strategy to enable the model to learn the preferences based on the two properties adaptively. The Cross-sequence Augmentation performs nonlinear mixing between different sequence representations from two directions. It produces virtual sequence representations that are diverse enough but retain the vital semantics of the original sequences. These two modules enhance the model to discover fine-grained preferences knowledge from single-user and cross-user perspectives. Extensive experiments verify the effectiveness of BASRec. The average improvement is up to 72.0% on GRU4Rec, 33.8% on SASRec, and 68.5% on FMLP-Rec. We demonstrate that BASRec generates data with a better balance between relevance and diversity than existing methods. The source code is available at //github.com/KingGugu/BASRec.

With the rise of large-scale language models (LLMs), it is currently popular and effective to convert multimodal information into text descriptions for multimodal multi-hop question answering. However, we argue that the current methods of multi-modal multi-hop question answering still mainly face two challenges: 1) The retrieved evidence containing a large amount of redundant information, inevitably leads to a significant drop in performance due to irrelevant information misleading the prediction. 2) The reasoning process without interpretable reasoning steps makes the model difficult to discover the logical errors for handling complex questions. To solve these problems, we propose a unified LLMs-based approach but without heavily relying on them due to the LLM's potential errors, and innovatively treat multimodal multi-hop question answering as a joint entailment tree generation and question answering problem. Specifically, we design a multi-task learning framework with a focus on facilitating common knowledge sharing across interpretability and prediction tasks while preventing task-specific errors from interfering with each other via mixture of experts. Afterward, we design an iterative feedback mechanism to further enhance both tasks by feeding back the results of the joint training to the LLM for regenerating entailment trees, aiming to iteratively refine the potential answer. Notably, our method has won the first place in the official leaderboard of WebQA (since April 10, 2024), and achieves competitive results on MultimodalQA.

Low-light conditions have an adverse impact on machine cognition, limiting the performance of computer vision systems in real life. Since low-light data is limited and difficult to annotate, we focus on image processing to enhance low-light images and improve the performance of any downstream task model, instead of fine-tuning each of the models which can be prohibitively expensive. We propose to improve the existing zero-reference low-light enhancement by leveraging the CLIP model to capture image prior and for semantic guidance. Specifically, we propose a data augmentation strategy to learn an image prior via prompt learning, based on image sampling, to learn the image prior without any need for paired or unpaired normal-light data. Next, we propose a semantic guidance strategy that maximally takes advantage of existing low-light annotation by introducing both content and context cues about the image training patches. We experimentally show, in a qualitative study, that the proposed prior and semantic guidance help to improve the overall image contrast and hue, as well as improve background-foreground discrimination, resulting in reduced over-saturation and noise over-amplification, common in related zero-reference methods. As we target machine cognition, rather than rely on assuming the correlation between human perception and downstream task performance, we conduct and present an ablation study and comparison with related zero-reference methods in terms of task-based performance across many low-light datasets, including image classification, object and face detection, showing the effectiveness of our proposed method.

Preconditioning techniques are crucial for enhancing the efficiency of solving large-scale linear equation systems that arise from partial differential equation (PDE) discretization. These techniques, such as Incomplete Cholesky factorization (IC) and data-driven neural network methods, accelerate the convergence of iterative solvers like Conjugate Gradient (CG) by approximating the original matrices. This paper introduces a novel approach that integrates Graph Neural Network (GNN) with traditional IC, addressing the shortcomings of direct generation methods based on GNN and achieving significant improvements in computational efficiency and scalability. Experimental results demonstrate an average reduction in iteration counts by 24.8% compared to IC and a two-order-of-magnitude increase in training scale compared to previous methods. A three-dimensional static structural analysis utilizing finite element methods was validated on training sparse matrices of up to 5 million dimensions and inference scales of up to 10 million. Furthermore, the approach demon-strates robust generalization capabilities across scales, facilitating the effective acceleration of CG solvers for large-scale linear equations using small-scale data on modest hardware. The method's robustness and scalability make it a practical solution for computational science.

Binaural speech enhancement (BSE) aims to jointly improve the speech quality and intelligibility of noisy signals received by hearing devices and preserve the spatial cues of the target for natural listening. Existing methods often suffer from the compromise between noise reduction (NR) capacity and spatial cues preservation (SCP) accuracy and a high computational demand in complex acoustic scenes. In this work, we present a learning-based lightweight binaural complex convolutional network (LBCCN), which excels in NR by filtering low-frequency bands and keeping the rest. Additionally, our approach explicitly incorporates the estimation of interchannel relative acoustic transfer function to ensure the spatial cues fidelity and speech clarity. Results show that the proposed LBCCN can achieve a comparable NR performance to state-of-the-art methods under various noise conditions, but with a much lower computational cost and a better SCP. The reproducible code and audio examples are available at //github.com/jywanng/LBCCN.

Non-Terrestrial Networks (NTNs) and satellite systems have become an important component of modern data communication systems in recent years. Despite their importance, the security of these systems is often limited, leaving them vulnerable to determined attackers. In this paper, we outline a scenario in which an attacker can infect an in-orbit NASA Core Flight System (cFS) based satellite with ransomware and communicate the infection back to a satellite operator. This paper is the first to demonstrate an end-to-end exploit path that results in a ransomware infection without the need for a supply chain attack or compromised credentials. Novel ransomware is delivered to an emulated satellite system using custom shellcode that exploits a weakness in the considered scenario. The scenario considered by this initial piece of work achieves a success rate of 33.3\% for a complete successful infection.

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Top-down visual attention mechanisms have been used extensively in image captioning and visual question answering (VQA) to enable deeper image understanding through fine-grained analysis and even multiple steps of reasoning. In this work, we propose a combined bottom-up and top-down attention mechanism that enables attention to be calculated at the level of objects and other salient image regions. This is the natural basis for attention to be considered. Within our approach, the bottom-up mechanism (based on Faster R-CNN) proposes image regions, each with an associated feature vector, while the top-down mechanism determines feature weightings. Applying this approach to image captioning, our results on the MSCOCO test server establish a new state-of-the-art for the task, achieving CIDEr / SPICE / BLEU-4 scores of 117.9, 21.5 and 36.9, respectively. Demonstrating the broad applicability of the method, applying the same approach to VQA we obtain first place in the 2017 VQA Challenge.

北京阿比特科技有限公司