亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce ECLAIR (Extended Classification of Lidar for AI Recognition), a new outdoor large-scale aerial LiDAR dataset designed specifically for advancing research in point cloud semantic segmentation. As the most extensive and diverse collection of its kind to date, the dataset covers a total area of 10$km^2$ with close to 600 million points and features eleven distinct object categories. To guarantee the dataset's quality and utility, we have thoroughly curated the point labels through an internal team of experts, ensuring accuracy and consistency in semantic labeling. The dataset is engineered to move forward the fields of 3D urban modeling, scene understanding, and utility infrastructure management by presenting new challenges and potential applications. As a benchmark, we report qualitative and quantitative analysis of a voxel-based point cloud segmentation approach based on the Minkowski Engine.

相關內容

Preference optimization, particularly through Reinforcement Learning from Human Feedback (RLHF), has achieved significant success in aligning Large Language Models (LLMs) to adhere to human intentions. Unlike offline alignment with a fixed dataset, online feedback collection from humans or AI on model generations typically leads to more capable reward models and better-aligned LLMs through an iterative process. However, achieving a globally accurate reward model requires systematic exploration to generate diverse responses that span the vast space of natural language. Random sampling from standard reward-maximizing LLMs alone is insufficient to fulfill this requirement. To address this issue, we propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions. By solving the inner-level problem with the reparameterized reward function, the resulting algorithm, named Self-Exploring Language Models (SELM), eliminates the need for a separate RM and iteratively updates the LLM with a straightforward objective. Compared to Direct Preference Optimization (DPO), the SELM objective reduces indiscriminate favor of unseen extrapolations and enhances exploration efficiency. Our experimental results demonstrate that when finetuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, SELM significantly boosts the performance on instruction-following benchmarks such as MT-Bench and AlpacaEval 2.0, as well as various standard academic benchmarks in different settings. Our code and models are available at //github.com/shenao-zhang/SELM.

Composed Image Retrieval (CIR) involves searching for target images based on an image-text pair query. While current methods treat this as a query-target matching problem, we argue that CIR triplets contain additional associations beyond this primary relation. In our paper, we identify two new relations within triplets, treating each triplet as a graph node. Firstly, we introduce the concept of text-bridged image alignment, where the query text serves as a bridge between the query image and the target image. We propose a hinge-based cross-attention mechanism to incorporate this relation into network learning. Secondly, we explore complementary text reasoning, considering CIR as a form of cross-modal retrieval where two images compose to reason about complementary text. To integrate these perspectives effectively, we design a twin attention-based compositor. By combining these complementary associations with the explicit query pair-target image relation, we establish a comprehensive set of constraints for CIR. Our framework, CaLa (Complementary Association Learning for Augmenting Composed Image Retrieval), leverages these insights. We evaluate CaLa on CIRR and FashionIQ benchmarks with multiple backbones, demonstrating its superiority in composed image retrieval.

Event data captured by Dynamic Vision Sensors (DVS) offers a unique approach to visual processing that differs from traditional video capture, showcasing its efficiency in dynamic and real-time scenarios. Despite advantages such as high temporal resolution and low energy consumption, the application of event data faces challenges due to limited dataset size and diversity. To address this, we developed EventZoom -- a data augmentation strategy specifically designed for event data. EventZoom employs a progressive temporal strategy that intelligently blends time and space to enhance the diversity and complexity of the data while maintaining its authenticity. This method aims to improve the quality of data for model training and enhance the adaptability and robustness of algorithms in handling complex dynamic scenes. We have experimentally validated EventZoom across various supervised learning frameworks, including supervised, semi-supervised, and unsupervised learning. Our results demonstrate that EventZoom consistently outperforms other data augmentation methods, confirming its effectiveness and applicability as a powerful event-based data augmentation tool in diverse learning settings.

Adapting state-of-the-art Large Language Models (LLMs) like GPT-4 and Gemini for specific tasks is challenging. Due to the opacity in their parameters, embeddings, and even output probabilities, existing fine-tuning adaptation methods are inapplicable. Consequently, adapting these black-box LLMs is only possible through their API services, raising concerns about transparency, privacy, and cost. To address these challenges, we introduce BBox-Adapter, a novel lightweight adapter for black-box LLMs. BBox-Adapter distinguishes target and source domain data by treating target data as positive and source data as negative. It employs a ranking-based Noise Contrastive Estimation (NCE) loss to promote the likelihood of target domain data while penalizing that of the source domain. Furthermore, it features an online adaptation mechanism, which incorporates real-time positive data sampling from ground-truth, human, or AI feedback, coupled with negative data from previous adaptations. Extensive experiments demonstrate BBox-Adapter's effectiveness and cost efficiency. It improves model performance by up to 6.77% across diverse tasks and domains, while reducing training and inference costs by 31.30x and 1.84x, respectively.

Recent advancements in Multi-modal Large Language Models (MLLMs) have significantly improved their performance in tasks combining vision and language. However, challenges persist in detailed multi-modal understanding, comprehension of complex tasks, and reasoning over multi-modal information. This paper introduces MMCTAgent, a novel multi-modal critical thinking agent framework designed to address the inherent limitations of current MLLMs in complex visual reasoning tasks. Inspired by human cognitive processes and critical thinking, MMCTAgent iteratively analyzes multi-modal information, decomposes queries, plans strategies, and dynamically evolves its reasoning. Additionally, MMCTAgent incorporates critical thinking elements such as verification of final answers and self-reflection through a novel approach that defines a vision-based critic and identifies task-specific evaluation criteria, thereby enhancing its decision-making abilities. Through rigorous evaluations across various image and video understanding benchmarks, we demonstrate that MMCTAgent (with and without the critic) outperforms both foundational MLLMs and other tool-augmented pipelines.

This work introduces the Supervised Expectation-Maximization Framework (SEMF), a versatile and model-agnostic framework that generates prediction intervals for datasets with complete or missing data. SEMF extends the Expectation-Maximization (EM) algorithm, traditionally used in unsupervised learning, to a supervised context, enabling it to extract latent representations for uncertainty estimation. The framework demonstrates robustness through extensive empirical evaluation across 11 tabular datasets, achieving$\unicode{x2013}$in some cases$\unicode{x2013}$narrower normalized prediction intervals and higher coverage than traditional quantile regression methods. Furthermore, SEMF integrates seamlessly with existing machine learning algorithms, such as gradient-boosted trees and neural networks, exemplifying its usefulness for real-world applications. The experimental results highlight SEMF's potential to advance state-of-the-art techniques in uncertainty quantification.

We present AutoDIR, an innovative all-in-one image restoration system incorporating latent diffusion. AutoDIR excels in its ability to automatically identify and restore images suffering from a range of unknown degradations. AutoDIR offers intuitive open-vocabulary image editing, empowering users to customize and enhance images according to their preferences. Specifically, AutoDIR consists of two key stages: a Blind Image Quality Assessment (BIQA) stage based on a semantic-agnostic vision-language model which automatically detects unknown image degradations for input images, an All-in-One Image Restoration (AIR) stage utilizes structural-corrected latent diffusion which handles multiple types of image degradations. Extensive experimental evaluation demonstrates that AutoDIR outperforms state-of-the-art approaches for a wider range of image restoration tasks. The design of AutoDIR also enables flexible user control (via text prompt) and generalization to new tasks as a foundation model of image restoration. Project is available at: \url{//jiangyitong.github.io/AutoDIR_webpage/}.

We introduce MatSynth, a dataset of 4,000+ CC0 ultra-high resolution PBR materials. Materials are crucial components of virtual relightable assets, defining the interaction of light at the surface of geometries. Given their importance, significant research effort was dedicated to their representation, creation and acquisition. However, in the past 6 years, most research in material acquisiton or generation relied either on the same unique dataset, or on company-owned huge library of procedural materials. With this dataset we propose a significantly larger, more diverse, and higher resolution set of materials than previously publicly available. We carefully discuss the data collection process and demonstrate the benefits of this dataset on material acquisition and generation applications. The complete data further contains metadata with each material's origin, license, category, tags, creation method and, when available, descriptions and physical size, as well as 3M+ renderings of the augmented materials, in 1K, under various environment lightings. The MatSynth dataset is released through the project page at: //www.gvecchio.com/matsynth.

Prompt tuning based on Context Optimization (CoOp) effectively adapts visual-language models (VLMs) to downstream tasks by inferring additional learnable prompt tokens. However, these tokens are less discriminative as they are independent of the pre-trained tokens and fail to capture input-specific knowledge, such as class-aware textual or instance-aware visual knowledge. Leveraging the discriminative and generalization capabilities inherent in pre-trained tokens, we introduce a novel approach named Self-Enhanced Prompt Tuning (SEP). The core principle of SEP involves adapting the learnable prompt tokens at each encoder layer from the corresponding self-pretrained tokens, thereby explicitly incorporating discriminative prior knowledge to enhance both textual-level and visual-level embeddings. Furthermore, SEP's self-enhanced tokens not only boost discrimination but also mitigate domain shifts in unseen domains, enhancing generalization. In practice, SEP selects several representative tokens from all pre-trained tokens for each input data at every layer of the text/visual encoders. Subsequently, a Token Fusion Module (TFM) is introduced to generate a self-enhanced token by merging these representative tokens with the learnable tokens using a cross-attention mechanism. This self-enhanced token is then concatenated with all pre-trained tokens, serving as input for subsequent encoder layers to produce the relevant embeddings. Comprehensive evaluations across various benchmarks and tasks confirm SEP's efficacy in prompt tuning. Code: \href{Code}{//github.com/htyao89/SEP}.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

北京阿比特科技有限公司