亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent work in data-driven modeling has demonstrated that a weak formulation of model equations enhances the noise robustness of a wide range of computational methods. In this paper, we demonstrate the power of the weak form to enhance the LaSDI (Latent Space Dynamics Identification) algorithm, a recently developed data-driven reduced order modeling technique. We introduce a weak form-based version WLaSDI (Weak-form Latent Space Dynamics Identification). WLaSDI first compresses data, then projects onto the test functions and learns the local latent space models. Notably, WLaSDI demonstrates significantly enhanced robustness to noise. With WLaSDI, the local latent space is obtained using weak-form equation learning techniques. Compared to the standard sparse identification of nonlinear dynamics (SINDy) used in LaSDI, the variance reduction of the weak form guarantees a robust and precise latent space recovery, hence allowing for a fast, robust, and accurate simulation. We demonstrate the efficacy of WLaSDI vs. LaSDI on several common benchmark examples including viscid and inviscid Burgers', radial advection, and heat conduction. For instance, in the case of 1D inviscid Burgers' simulations with the addition of up to 100% Gaussian white noise, the relative error remains consistently below 6% for WLaSDI, while it can exceed 10,000% for LaSDI. Similarly, for radial advection simulations, the relative errors stay below 15% for WLaSDI, in stark contrast to the potential errors of up to 10,000% with LaSDI. Moreover, speedups of several orders of magnitude can be obtained with WLaSDI. For example applying WLaSDI to 1D Burgers' yields a 140X speedup compared to the corresponding full order model. Python code to reproduce the results in this work is available at (//github.com/MathBioCU/PyWSINDy_ODE) and (//github.com/MathBioCU/PyWLaSDI).

相關內容

Multi-objective optimization is a widely studied problem in diverse fields, such as engineering and finance, that seeks to identify a set of non-dominated solutions that provide optimal trade-offs among competing objectives. However, the computation of the entire Pareto front can become prohibitively expensive, both in terms of computational resources and time, particularly when dealing with a large number of objectives. In practical applications, decision-makers (DMs) will select a single solution of the Pareto front that aligns with their preferences to be implemented; thus, traditional multi-objective algorithms invest a lot of budget sampling solutions that are not interesting for the DM. In this paper, we propose two novel algorithms that employ Gaussian Processes and advanced discretization methods to efficiently locate the most preferred region of the Pareto front in expensive-to-evaluate problems. Our approach involves interacting with the decision-maker to guide the optimization process towards their preferred trade-offs. Our experimental results demonstrate that our proposed algorithms are effective in finding non-dominated solutions that align with the decision-maker's preferences while maintaining computational efficiency.

Network slicing is a crucial enabler and a trend for the Next Generation Mobile Network (NGMN) and various other new systems like the Internet of Vehicles (IoV) and Industrial IoT (IIoT). Orchestration and machine learning are key elements with a crucial role in the network-slicing processes since the NS process needs to orchestrate resources and functionalities, and machine learning can potentially optimize the orchestration process. However, existing network-slicing architectures lack the ability to define intelligent approaches to orchestrate features and resources in the slicing process. This paper discusses machine learning-based orchestration of features and capabilities in network slicing architectures. Initially, the slice resource orchestration and allocation in the slicing planning, configuration, commissioning, and operation phases are analyzed. In sequence, we highlight the need for optimized architectural feature orchestration and recommend using ML-embed agents, federated learning intrinsic mechanisms for knowledge acquisition, and a data-driven approach embedded in the network slicing architecture. We further develop an architectural features orchestration case embedded in the SFI2 network slicing architecture. An attack prevention security mechanism is developed for the SFI2 architecture using distributed embedded and cooperating ML agents. The case presented illustrates the architectural feature's orchestration process and benefits, highlighting its importance for the network slicing process.

The prevalence of the powerful multilingual models, such as Whisper, has significantly advanced the researches on speech recognition. However, these models often struggle with handling the code-switching setting, which is essential in multilingual speech recognition. Recent studies have attempted to address this setting by separating the modules for different languages to ensure distinct latent representations for languages. Some other methods considered the switching mechanism based on language identification. In this study, a new attention-guided adaptation is proposed to conduct parameter-efficient learning for bilingual ASR. This method selects those attention heads in a model which closely express language identities and then guided those heads to be correctly attended with their corresponding languages. The experiments on the Mandarin-English code-switching speech corpus show that the proposed approach achieves a 14.2% mixed error rate, surpassing state-of-the-art method, where only 5.6% additional parameters over Whisper are trained.

Binary function similarity detection plays an important role in a wide range of security applications. Existing works usually assume that the query function and target function share equal semantics and compare their full semantics to obtain the similarity. However, we find that the function mapping is more complex, especially when function inlining happens. In this paper, we will systematically investigate cross-inlining binary function similarity detection. We first construct a cross-inlining dataset by compiling 51 projects using 9 compilers, with 4 optimizations, to 6 architectures, with 2 inlining flags, which results in two datasets both with 216 combinations. Then we construct the cross-inlining function mappings by linking the common source functions in these two datasets. Through analysis of this dataset, we find that three cross-inlining patterns widely exist while existing work suffers when detecting cross-inlining binary function similarity. Next, we propose a pattern-based model named CI-Detector for cross-inlining matching. CI-Detector uses the attributed CFG to represent the semantics of binary functions and GNN to embed binary functions into vectors. CI-Detector respectively trains a model for these three cross-inlining patterns. Finally, the testing pairs are input to these three models and all the produced similarities are aggregated to produce the final similarity. We conduct several experiments to evaluate CI-Detector. Results show that CI-Detector can detect cross-inlining pairs with a precision of 81% and a recall of 97%, which exceeds all state-of-the-art works.

Comparing spatial data sets is a ubiquitous task in data analysis, however the presence of spatial autocorrelation means that standard estimates of variance will be wrong and tend to over-estimate the statistical significance of correlations and other observations. While there are a number of existing approaches to this problem, none are ideal, requiring detailed analytical calculations, which are hard to generalise or detailed knowledge of the data generating process, which may not be available. In this work we propose a resampling approach based on Tobler's Law. By resampling the data with fixed spatial autocorrelation, measured by Moran's I, we generate a more realistic null model. Testing on real and synthetic data, we find that, as long as the spatial autocorrelation is not too strong, this approach works just as well as if we knew the data generating process.

In this work, simulation-based equations to calculate propagation constant in uniform or periodic structures (SES) are deduced and verified through simulations in various types of structures. The modeling of those structures are essentially based on field distributions from a driven-mode solver, and the field distributions are used as the input parameters of the FPPS. It allows the separation of forward and backward waves from a total wave inside such a uniform or periodic structure, and thus it can be used to calculate the propagation constants inside both uniform and periodic structures even with a strong reflection. In order to test the performance and function of the FPPS, it has been applied to a variety of typical structures, including uniform waveguides, lossfree closed structures, lossy closed structures, and open radiation structures, and compared with the results of eigenmode solvers, equivalent network methods, and spectral domain integral equation methods. The comparison shows the easy-to-use and adaptable nature of the FPPS. the FPPS. This FPPS could be also applied to open radiating structures, and even multi-dimensional periodic/uniform structures.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.

Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.

It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.

北京阿比特科技有限公司