亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Most deepfake detection methods focus on detecting spatial and/or spatio-temporal changes in facial attributes. This is because available benchmark datasets contain mostly visual-only modifications. However, a sophisticated deepfake may include small segments of audio or audio-visual manipulations that can completely change the meaning of the content. To addresses this gap, we propose and benchmark a new dataset, Localized Audio Visual DeepFake (LAV-DF), consisting of strategic content-driven audio, visual and audio-visual manipulations. The proposed baseline method, Boundary Aware Temporal Forgery Detection (BA-TFD), is a 3D Convolutional Neural Network-based architecture which efficiently captures multimodal manipulations. We further improve (i.e. BA-TFD+) the baseline method by replacing the backbone with a Multiscale Vision Transformer and guide the training process with contrastive, frame classification, boundary matching and multimodal boundary matching loss functions. The quantitative analysis demonstrates the superiority of BA- TFD+ on temporal forgery localization and deepfake detection tasks using several benchmark datasets including our newly proposed dataset. The dataset, models and code are available at //github.com/ControlNet/LAV-DF.

相關內容

In the era of extensive intersection between art and Artificial Intelligence (AI), such as image generation and fiction co-creation, AI for music remains relatively nascent, particularly in music understanding. This is evident in the limited work on deep music representations, the scarcity of large-scale datasets, and the absence of a universal and community-driven benchmark. To address this issue, we introduce the Music Audio Representation Benchmark for universaL Evaluation, termed MARBLE. It aims to provide a benchmark for various Music Information Retrieval (MIR) tasks by defining a comprehensive taxonomy with four hierarchy levels, including acoustic, performance, score, and high-level description. We then establish a unified protocol based on 14 tasks on 8 public-available datasets, providing a fair and standard assessment of representations of all open-sourced pre-trained models developed on music recordings as baselines. Besides, MARBLE offers an easy-to-use, extendable, and reproducible suite for the community, with a clear statement on copyright issues on datasets. Results suggest recently proposed large-scale pre-trained musical language models perform the best in most tasks, with room for further improvement. The leaderboard and toolkit repository are published at //marble-bm.shef.ac.uk to promote future music AI research.

We consider the problem of video snapshot compressive imaging (SCI), where sequential high-speed frames are modulated by different masks and captured by a single measurement. The underlying principle of reconstructing multi-frame images from only one single measurement is to solve an ill-posed problem. By combining optimization algorithms and neural networks, deep unfolding networks (DUNs) score tremendous achievements in solving inverse problems. In this paper, our proposed model is under the DUN framework and we propose a 3D Convolution-Transformer Mixture (CTM) module with a 3D efficient and scalable attention model plugged in, which helps fully learn the correlation between temporal and spatial dimensions by virtue of Transformer. To our best knowledge, this is the first time that Transformer is employed to video SCI reconstruction. Besides, to further investigate the high-frequency information during the reconstruction process which are neglected in previous studies, we introduce variance estimation characterizing the uncertainty on a pixel-by-pixel basis. Extensive experimental results demonstrate that our proposed method achieves state-of-the-art (SOTA) (with a 1.2dB gain in PSNR over previous SOTA algorithm) results. We will release the code.

Eye blinking detection in the wild plays an essential role in deception detection, driving fatigue detection, etc. Despite the fact that numerous attempts have already been made, the majority of them have encountered difficulties, such as the derived eye images having different resolutions as the distance between the face and the camera changes; or the requirement of a lightweight detection model to obtain a short inference time in order to perform in real-time. In this research, two problems are addressed: how the eye blinking detection model can learn efficiently from different resolutions of eye pictures in diverse conditions; and how to reduce the size of the detection model for faster inference time. We propose to utilize upsampling and downsampling the input eye images to the same resolution as one potential solution for the first problem, then find out which interpolation method can result in the highest performance of the detection model. For the second problem, although a recent spatiotemporal convolutional neural network used for eye blinking detection has a strong capacity to extract both spatial and temporal characteristics, it remains having a high number of network parameters, leading to high inference time. Therefore, using Depth-wise Separable Convolution rather than conventional convolution layers inside each branch is considered in this paper as a feasible solution.

In arbitrary shape text detection, locating accurate text boundaries is challenging and non-trivial. Existing methods often suffer from indirect text boundary modeling or complex post-processing. In this paper, we systematically present a unified coarse-to-fine framework via boundary learning for arbitrary shape text detection, which can accurately and efficiently locate text boundaries without post-processing. In our method, we explicitly model the text boundary via an innovative iterative boundary transformer in a coarse-to-fine manner. In this way, our method can directly gain accurate text boundaries and abandon complex post-processing to improve efficiency. Specifically, our method mainly consists of a feature extraction backbone, a boundary proposal module, and an iteratively optimized boundary transformer module. The boundary proposal module consisting of multi-layer dilated convolutions will compute important prior information (including classification map, distance field, and direction field) for generating coarse boundary proposals while guiding the boundary transformer's optimization. The boundary transformer module adopts an encoder-decoder structure, in which the encoder is constructed by multi-layer transformer blocks with residual connection while the decoder is a simple multi-layer perceptron network (MLP). Under the guidance of prior information, the boundary transformer module will gradually refine the coarse boundary proposals via iterative boundary deformation. Furthermore, we propose a novel boundary energy loss (BEL) which introduces an energy minimization constraint and an energy monotonically decreasing constraint to further optimize and stabilize the learning of boundary refinement. Extensive experiments on publicly available and challenging datasets demonstrate the state-of-the-art performance and promising efficiency of our method.

As the saying goes, "seeing is believing". However, with the development of digital face editing tools, we can no longer trust what we can see. Although face forgery detection has made promising progress, most current methods are designed manually by human experts, which is labor-consuming. In this paper, we develop an end-to-end framework based on neural architecture search (NAS) for deepfake detection, which can automatically design network architectures without human intervention. First, a forgery-oriented search space is created to choose appropriate operations for this task. Second, we propose a novel performance estimation metric, which guides the search process to select more general models. The cross-dataset search is also considered to develop more general architectures. Eventually, we connect the cells in a cascaded pyramid way for final forgery classification. Compared with state-of-the-art networks artificially designed, our method achieves competitive performance in both in-dataset and cross-dataset scenarios.

This work introduces a dataset, benchmark, and challenge for the problem of video copy detection and localization. The problem comprises two distinct but related tasks: determining whether a query video shares content with a reference video ("detection"), and additionally temporally localizing the shared content within each video ("localization"). The benchmark is designed to evaluate methods on these two tasks, and simulates a realistic needle-in-haystack setting, where the majority of both query and reference videos are "distractors" containing no copied content. We propose a metric that reflects both detection and localization accuracy. The associated challenge consists of two corresponding tracks, each with restrictions that reflect real-world settings. We provide implementation code for evaluation and baselines. We also analyze the results and methods of the top submissions to the challenge. The dataset, baseline methods and evaluation code is publicly available and will be discussed at a dedicated CVPR'23 workshop.

Transformer is a type of deep neural network mainly based on self-attention mechanism which is originally applied in natural language processing field. Inspired by the strong representation ability of transformer, researchers propose to extend transformer for computer vision tasks. Transformer-based models show competitive and even better performance on various visual benchmarks compared to other network types such as convolutional networks and recurrent networks. In this paper we provide a literature review of these visual transformer models by categorizing them in different tasks and analyze the advantages and disadvantages of these methods. In particular, the main categories include the basic image classification, high-level vision, low-level vision and video processing. Self-attention in computer vision is also briefly revisited as self-attention is the base component in transformer. Efficient transformer methods are included for pushing transformer into real applications. Finally, we give a discussion about the further research directions for visual transformer.

Object detection with transformers (DETR) reaches competitive performance with Faster R-CNN via a transformer encoder-decoder architecture. Inspired by the great success of pre-training transformers in natural language processing, we propose a pretext task named random query patch detection to unsupervisedly pre-train DETR (UP-DETR) for object detection. Specifically, we randomly crop patches from the given image and then feed them as queries to the decoder. The model is pre-trained to detect these query patches from the original image. During the pre-training, we address two critical issues: multi-task learning and multi-query localization. (1) To trade-off multi-task learning of classification and localization in the pretext task, we freeze the CNN backbone and propose a patch feature reconstruction branch which is jointly optimized with patch detection. (2) To perform multi-query localization, we introduce UP-DETR from single-query patch and extend it to multi-query patches with object query shuffle and attention mask. In our experiments, UP-DETR significantly boosts the performance of DETR with faster convergence and higher precision on PASCAL VOC and COCO datasets. The code will be available soon.

We present a new method to learn video representations from large-scale unlabeled video data. Ideally, this representation will be generic and transferable, directly usable for new tasks such as action recognition and zero or few-shot learning. We formulate unsupervised representation learning as a multi-modal, multi-task learning problem, where the representations are shared across different modalities via distillation. Further, we introduce the concept of loss function evolution by using an evolutionary search algorithm to automatically find optimal combination of loss functions capturing many (self-supervised) tasks and modalities. Thirdly, we propose an unsupervised representation evaluation metric using distribution matching to a large unlabeled dataset as a prior constraint, based on Zipf's law. This unsupervised constraint, which is not guided by any labeling, produces similar results to weakly-supervised, task-specific ones. The proposed unsupervised representation learning results in a single RGB network and outperforms previous methods. Notably, it is also more effective than several label-based methods (e.g., ImageNet), with the exception of large, fully labeled video datasets.

Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.

北京阿比特科技有限公司