We consider the problem of synchronizing a multi-agent system (MAS) composed of several identical linear systems connected through a directed graph.To design a suitable controller, we construct conditions based on Bilinear Matrix Inequalities (BMIs) that ensure state synchronization.Since these conditions are non-convex, we propose an iterative algorithm based on a suitable relaxation that allows us to formulate Linear Matrix Inequality (LMI) conditions.As a result, the algorithm yields a common static state-feedback matrix for the controller that satisfies general linear performance constraints.Our results are achieved under the mild assumption that the graph is time-invariant and connected.
The exponential growth in scientific publications poses a severe challenge for human researchers. It forces attention to more narrow sub-fields, which makes it challenging to discover new impactful research ideas and collaborations outside one's own field. While there are ways to predict a scientific paper's future citation counts, they need the research to be finished and the paper written, usually assessing impact long after the idea was conceived. Here we show how to predict the impact of onsets of ideas that have never been published by researchers. For that, we developed a large evolving knowledge graph built from more than 21 million scientific papers. It combines a semantic network created from the content of the papers and an impact network created from the historic citations of papers. Using machine learning, we can predict the dynamic of the evolving network into the future with high accuracy, and thereby the impact of new research directions. We envision that the ability to predict the impact of new ideas will be a crucial component of future artificial muses that can inspire new impactful and interesting scientific ideas.
We adopt the integral definition of the fractional Laplace operator and study an optimal control problem on Lipschitz domains that involves a fractional elliptic partial differential equation (PDE) as state equation and a control variable that enters the state equation as a coefficient; pointwise constraints on the control variable are considered as well. We establish the existence of optimal solutions and analyze first and, necessary and sufficient, second order optimality conditions. Regularity estimates for optimal variables are also analyzed. We develop two finite element discretization strategies: a semidiscrete scheme in which the control variable is not discretized, and a fully discrete scheme in which the control variable is discretized with piecewise constant functions. For both schemes, we analyze the convergence properties of discretizations and derive error estimates.
We investigate various forms of (model-theoretic) stability for hypergraphs and their corresponding strengthenings of the hypergraph regularity lemma with respect to partitions of vertices. On the one hand, we provide a complete classification of the various possibilities in the ternary case. On the other hand, we provide an example of a family of slice-wise stable 3-hypergraphs so that for no partition of the vertices, any triple of parts has density close to 0 or 1. In particular, this addresses some questions and conjectures of Terry and Wolf. We work in the general measure theoretic context of graded probability spaces, so all our results apply both to measures in ultraproducts of finite graphs, leading to the aforementioned combinatorial applications, and to commuting definable Keisler measures, leading to applications in model theory.
We present a study on asymptotically compatible Galerkin discretizations for a class of parametrized nonlinear variational problems. The abstract analytical framework is based on variational convergence, or Gamma-convergence. We demonstrate the broad applicability of the theoretical framework by developing asymptotically compatible finite element discretizations of some representative nonlinear nonlocal variational problems on a bounded domain. These include nonlocal nonlinear problems with classically-defined, local boundary constraints through heterogeneous localization at the boundary, as well as nonlocal problems posed on parameter-dependent domains.
The evaluation of text-generative vision-language models is a challenging yet crucial endeavor. By addressing the limitations of existing Visual Question Answering (VQA) benchmarks and proposing innovative evaluation methodologies, our research seeks to advance our understanding of these models' capabilities. We propose a novel VQA benchmark based on well-known visual classification datasets which allows a granular evaluation of text-generative vision-language models and their comparison with discriminative vision-language models. To improve the assessment of coarse answers on fine-grained classification tasks, we suggest using the semantic hierarchy of the label space to ask automatically generated follow-up questions about the ground-truth category. Finally, we compare traditional NLP and LLM-based metrics for the problem of evaluating model predictions given ground-truth answers. We perform a human evaluation study upon which we base our decision on the final metric. We apply our benchmark to a suite of vision-language models and show a detailed comparison of their abilities on object, action, and attribute classification. Our contributions aim to lay the foundation for more precise and meaningful assessments, facilitating targeted progress in the exciting field of vision-language modeling.
We introduce a novel continual learning method based on multifidelity deep neural networks. This method learns the correlation between the output of previously trained models and the desired output of the model on the current training dataset, limiting catastrophic forgetting. On its own the multifidelity continual learning method shows robust results that limit forgetting across several datasets. Additionally, we show that the multifidelity method can be combined with existing continual learning methods, including replay and memory aware synapses, to further limit catastrophic forgetting. The proposed continual learning method is especially suited for physical problems where the data satisfy the same physical laws on each domain, or for physics-informed neural networks, because in these cases we expect there to be a strong correlation between the output of the previous model and the model on the current training domain.
The spectral decomposition of graph adjacency matrices is an essential ingredient in the design of graph signal processing (GSP) techniques. When the adjacency matrix has multi-dimensional eigenspaces, it is desirable to base GSP constructions on a particular eigenbasis (the `preferred basis'). In this paper, we provide an explicit and detailed representation-theoretic account for the spectral decomposition of the adjacency matrix of a (weighted) Cayley graph, which results in a preferred basis. Our method applies to all weighted (not necessarily quasi-Abelian) Cayley graphs, and provides descriptions of eigenvalues and eigenvectors based on the coefficient functions of the representations of the underlying group. Next, we use such bases to build frames that are suitable for developing signal processing on such graphs. These are the Frobenius--Schur frames and Cayley frames, for which we provide a characterization and a practical recipe for their construction.
This study proposes a Network to recognize displacement of a RC frame structure from a video by a monocular camera. The proposed Network consists of two modules which is FlowNet2 and POFRN-Net. FlowNet2 is used to generate dense optical flow as well as POFRN-Net is to extract pose parameter H. FlowNet2 convert two video frames into dense optical flow. POFRN-Net is inputted dense optical flow from FlowNet2 to output the pose parameter H. The displacement of any points of structure can be calculated from parameter H. The Fast Fourier Transform (FFT) is applied to obtain frequency domain signal from corresponding displacement signal. Furthermore, the comparison of the truth displacement on the First floor of the First video is shown in this study. Finally, the predicted displacements on four floors of RC frame structure of given three videos are exhibited in the last of this study.
We present a family of policies that, integrated within a runtime task scheduler (Nanox), pursue the goal of improving the energy efficiency of task-parallel executions with no intervention from the programmer. The proposed policies tackle the problem by modifying the core operating frequency via DVFS mechanisms, or by enabling/disabling the mapping of tasks to specific cores at selected execution points, depending on the internal status of the scheduler. Experimental results on an asymmetric SoC (Exynos 5422) and for a specific operation (Cholesky factorization) reveal gains up to 29% in terms of energy efficiency and considerable reductions in average power.
We provide a new theoretical framework for the variable-step deferred correction (DC) methods based on the well-known BDF2 formula. By using the discrete orthogonal convolution kernels, some high-order BDF2-DC methods are proven to be stable on arbitrary time grids according to the recent definition of stability (SINUM, 60: 2253-2272). It significantly relaxes the existing step-ratio restrictions for the BDF2-DC methods (BIT, 62: 1789-1822). The associated sharp error estimates are established by taking the numerical effects of the starting approximations into account, and they suggest that the BDF2-DC methods have no aftereffect, that is, the lower-order starting scheme for the BDF2 scheme will not cause a loss in the accuracy of the high-order BDF2-DC methods. Extensive tests on the graded and random time meshes are presented to support the new theory.