亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The rapid spread of rumors in social media is mainly caused by individual retweets. This paper applies uncertainty time series analysis (UTSA) to analyze a rumor retweeting behavior on Weibo. First, the rumor forwarding is modeled using uncertain time series, including order selection, parameter estimation, residual analysis, uncertainty hypothesis testing and forecast, and the validity of using uncertain time series analysis is further supported by analyzing the characteristics of the residual plot. The experimental results show that the uncertain time series can better predict the next stage of rumor forwarding. The results of the study have important practical significance for rumor management and the management of social media information dissemination.

相關內容

Phishing, a prevalent cybercrime tactic for decades, remains a significant threat in today's digital world. By leveraging clever social engineering elements and modern technology, cybercrime targets many individuals, businesses, and organizations to exploit trust and security. These cyber-attackers are often disguised in many trustworthy forms to appear as legitimate sources. By cleverly using psychological elements like urgency, fear, social proof, and other manipulative strategies, phishers can lure individuals into revealing sensitive and personalized information. Building on this pervasive issue within modern technology, this paper aims to analyze the effectiveness of 15 Large Language Models (LLMs) in detecting phishing attempts, specifically focusing on a randomized set of "419 Scam" emails. The objective is to determine which LLMs can accurately detect phishing emails by analyzing a text file containing email metadata based on predefined criteria. The experiment concluded that the following models, ChatGPT 3.5, GPT-3.5-Turbo-Instruct, and ChatGPT, were the most effective in detecting phishing emails.

This paper focuses on self-supervised monocular depth estimation in dynamic scenes trained on monocular videos. Existing methods jointly estimate pixel-wise depth and motion, relying mainly on an image reconstruction loss. Dynamic regions1 remain a critical challenge for these methods due to the inherent ambiguity in depth and motion estimation, resulting in inaccurate depth estimation. This paper proposes a self-supervised training framework exploiting pseudo depth labels for dynamic regions from training data. The key contribution of our framework is to decouple depth estimation for static and dynamic regions of images in the training data. We start with an unsupervised depth estimation approach, which provides reliable depth estimates for static regions and motion cues for dynamic regions and allows us to extract moving object information at the instance level. In the next stage, we use an object network to estimate the depth of those moving objects assuming rigid motions. Then, we propose a new scale alignment module to address the scale ambiguity between estimated depths for static and dynamic regions. We can then use the depth labels generated to train an end-to-end depth estimation network and improve its performance. Extensive experiments on the Cityscapes and KITTI datasets show that our self-training strategy consistently outperforms existing self/unsupervised depth estimation methods.

Despite decision-making being a vital goal of data visualization, little work has been done to differentiate the decision-making tasks within our field. While visualization task taxonomies and typologies exist, they are often too granular for describing complex decision goals and decision-making processes, thus limiting their potential use in designing decision-support tools. In this paper, we contribute a typology of decision-making tasks that were iteratively refined from a list of design goals distilled from a literature review. Our typology is concise and consists of only three tasks: choose, activate, and create. Originally proposed by the scientific community, we extend and provide definitions for these tasks that are suitable for the visualization community. Our proposed typology offers two benefits. First, it facilitates the composition of decisions using these three tasks, allowing for flexible and clear descriptions across varying complexities and domains. Second, diagrams created using this typology encourage productive discourse between visualization designers and domain experts by abstracting the intricacies of data, thereby promoting clarity and rigorous analysis of decision-making processes. We motivate the use of our typology through four case studies and demonstrate the benefits of our approach through semi-structured interviews conducted with experienced members of the visualization community, comprising academic and industry experts, who have contributed to developing or publishing decision support systems for domain experts. Our interviewees composed diagrams using our typology to delineate the decision-making processes that drive their decision-support tools, demonstrating its descriptive capacity and effectiveness.

In the ever-evolving landscape of social network advertising, the volume and accuracy of data play a critical role in the performance of predictive models. However, the development of robust predictive algorithms is often hampered by the limited size and potential bias present in real-world datasets. This study presents and explores a generative augmentation framework of social network advertising data. Our framework explores three generative models for data augmentation - Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Gaussian Mixture Models (GMMs) - to enrich data availability and diversity in the context of social network advertising analytics effectiveness. By performing synthetic extensions of the feature space, we find that through data augmentation, the performance of various classifiers has been quantitatively improved. Furthermore, we compare the relative performance gains brought by each data augmentation technique, providing insights for practitioners to select appropriate techniques to enhance model performance. This paper contributes to the literature by showing that synthetic data augmentation alleviates the limitations imposed by small or imbalanced datasets in the field of social network advertising. At the same time, this article also provides a comparative perspective on the practicality of different data augmentation methods, thereby guiding practitioners to choose appropriate techniques to enhance model performance.

In this paper, we present RStab, a novel framework for video stabilization that integrates 3D multi-frame fusion through volume rendering. Departing from conventional methods, we introduce a 3D multi-frame perspective to generate stabilized images, addressing the challenge of full-frame generation while preserving structure. The core of our approach lies in Stabilized Rendering (SR), a volume rendering module, which extends beyond the image fusion by incorporating feature fusion. The core of our RStab framework lies in Stabilized Rendering (SR), a volume rendering module, fusing multi-frame information in 3D space. Specifically, SR involves warping features and colors from multiple frames by projection, fusing them into descriptors to render the stabilized image. However, the precision of warped information depends on the projection accuracy, a factor significantly influenced by dynamic regions. In response, we introduce the Adaptive Ray Range (ARR) module to integrate depth priors, adaptively defining the sampling range for the projection process. Additionally, we propose Color Correction (CC) assisting geometric constraints with optical flow for accurate color aggregation. Thanks to the three modules, our RStab demonstrates superior performance compared with previous stabilizers in the field of view (FOV), image quality, and video stability across various datasets.

Large language models primarily rely on inductive reasoning for decision making. This results in unreliable decisions when applied to real-world tasks that often present incomplete contexts and conditions. Thus, accurate probability estimation and appropriate interpretations are required to enhance decision-making reliability. In this paper, we propose a Bayesian inference framework called BIRD for large language models. BIRD provides controllable and interpretable probability estimation for model decisions, based on abductive factors, LLM entailment, as well as learnable deductive Bayesian modeling. Experiments show that BIRD produces probability estimations that align with human judgments over 65% of the time using open-sourced Llama models, outperforming the state-of-the-art GPT-4 by 35%. We also show that BIRD can be directly used for trustworthy decision making on many real-world applications.

Finding maximum cliques in large networks is a challenging combinatorial problem with many real-world applications. We present a fast algorithm to achieve the exact solution for the maximum clique problem in large sparse networks based on efficient graph decomposition. A bunch of effective techniques is being used to greatly prune the graph and a novel concept called Complete-Upper-Bound-Induced Subgraph (CUBIS) is proposed to ensure that the structures with the potential to form the maximum clique are retained in the process of graph decomposition. Our algorithm first pre-prunes peripheral nodes, subsequently, one or two small-scale CUBISs are constructed guided by the core number and current maximum clique size. Bron-Kerbosch search is performed on each CUBIS to find the maximum clique. Experiments on 50 empirical networks with a scale of up to 20 million show the CUBIS scales are largely independent of the original network scale. This enables an approximately linear runtime, making our algorithm amenable for large networks. Our work provides a new framework for effectively solving maximum clique problems on massive sparse graphs, which not only makes the graph scale no longer the bottleneck but also shows some light on solving other clique-related problems.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

We introduce the first system towards the novel task of answering complex multisentence recommendation questions in the tourism domain. Our solution uses a pipeline of two modules: question understanding and answering. For question understanding, we define an SQL-like query language that captures the semantic intent of a question; it supports operators like subset, negation, preference and similarity, which are often found in recommendation questions. We train and compare traditional CRFs as well as bidirectional LSTM-based models for converting a question to its semantic representation. We extend these models to a semisupervised setting with partially labeled sequences gathered through crowdsourcing. We find that our best model performs semi-supervised training of BiDiLSTM+CRF with hand-designed features and CCM(Chang et al., 2007) constraints. Finally, in an end to end QA system, our answering component converts our question representation into queries fired on underlying knowledge sources. Our experiments on two different answer corpora demonstrate that our system can significantly outperform baselines with up to 20 pt higher accuracy and 17 pt higher recall.

北京阿比特科技有限公司