Recently, minimal linear codes have been extensively studied due to their applications in secret sharing schemes, two-party computations, and so on. Constructing minimal linear codes violating the Ashikhmin-Barg condition and then determining their weight distributions have been interesting in coding theory and cryptography. In this paper, basing on exponential sums, Krawtchouk polynomials, and a function defined on special sets of vectors in $\mathbb{F}_3^m$, we present two new classes of minimal ternary linear codes violating the Ashikhmin-Barg condition, and then determine their complete weight enumerators. Especially, the minimal distance of a class of these codes is better than that of codes constructed in \cite{Heng-Ding-Zhou}.
In this short article, we showcase the derivation of the optimal (minimum error variance) estimator, when one part of the stochastic LTI system output is not measured but is able to be predicted from the measured system outputs. Similar derivations have been done before but not using state-space representation.
This paper considers identification and estimation of the causal effect of the time Z until a subject is treated on a survival outcome T. The treatment is not randomly assigned, T is randomly right censored by a random variable C and the time to treatment Z is right censored by min(T,C) The endogeneity issue is treated using an instrumental variable explaining Z and independent of the error term of the model. We study identification in a fully nonparametric framework. We show that our specification generates an integral equation, of which the regression function of interest is a solution. We provide identification conditions that rely on this identification equation. For estimation purposes, we assume that the regression function follows a parametric model. We propose an estimation procedure and give conditions under which the estimator is asymptotically normal. The estimators exhibit good finite sample properties in simulations. Our methodology is applied to find evidence supporting the efficacy of a therapy for burn-out.
In network analysis, how to estimate the number of communities $K$ is a fundamental problem. We consider a broad setting where we allow severe degree heterogeneity and a wide range of sparsity levels, and propose Stepwise Goodness-of-Fit (StGoF) as a new approach. This is a stepwise algorithm, where for $m = 1, 2, \ldots$, we alternately use a community detection step and a goodness-of-fit (GoF) step. We adapt SCORE \cite{SCORE} for community detection, and propose a new GoF metric. We show that at step $m$, the GoF metric diverges to $\infty$ in probability for all $m < K$ and converges to $N(0,1)$ if $m = K$. This gives rise to a consistent estimate for $K$. Also, we discover the right way to define the signal-to-noise ratio (SNR) for our problem and show that consistent estimates for $K$ do not exist if $\mathrm{SNR} \goto 0$, and StGoF is uniformly consistent for $K$ if $\mathrm{SNR} \goto \infty$. Therefore, StGoF achieves the optimal phase transition. Similar stepwise methods (e.g., \cite{wang2017likelihood, ma2018determining}) are known to face analytical challenges. We overcome the challenges by using a different stepwise scheme in StGoF and by deriving sharp results that are not available before. The key to our analysis is to show that SCORE has the {\it Non-Splitting Property (NSP)}. Primarily due to a non-tractable rotation of eigenvectors dictated by the Davis-Kahan $\sin(\theta)$ theorem, the NSP is non-trivial to prove and requires new techniques we develop.
Optimal linear prediction (aka. kriging) of a random field $\{Z(x)\}_{x\in\mathcal{X}}$ indexed by a compact metric space $(\mathcal{X},d_{\mathcal{X}})$ can be obtained if the mean value function $m\colon\mathcal{X}\to\mathbb{R}$ and the covariance function $\varrho\colon\mathcal{X}\times\mathcal{X}\to\mathbb{R}$ of $Z$ are known. We consider the problem of predicting the value of $Z(x^*)$ at some location $x^*\in\mathcal{X}$ based on observations at locations $\{x_j\}_{j=1}^n$ which accumulate at $x^*$ as $n\to\infty$ (or, more generally, predicting $\varphi(Z)$ based on $\{\varphi_j(Z)\}_{j=1}^n$ for linear functionals $\varphi,\varphi_1,\ldots,\varphi_n$). Our main result characterizes the asymptotic performance of linear predictors (as $n$ increases) based on an incorrect second order structure $(\tilde{m},\tilde{\varrho})$, without any restrictive assumptions on $\varrho,\tilde{\varrho}$ such as stationarity. We, for the first time, provide necessary and sufficient conditions on $(\tilde{m},\tilde{\varrho})$ for asymptotic optimality of the corresponding linear predictor holding uniformly with respect to $\varphi$. These general results are illustrated by weakly stationary random fields on $\mathcal{X}\subset\mathbb{R}^d$ with Mat\'ern or periodic covariance functions, and on the sphere $\mathcal{X}=\mathbb{S}^2$ for the case of two isotropic covariance functions.
In this paper, we introduce a new class of codes, called weighted parity-check codes, where each parity-check bit has a weight that indicates its likelihood to be one (instead of fixing each parity-check bit to be zero). It is applicable to a wide range of settings, e.g. asymmetric channels, channels with state and/or cost constraints, and the Wyner-Ziv problem, and can provably achieve the capacity. For the channel with state (Gelfand-Pinsker) setting, the proposed coding scheme has two advantages compared to the nested linear code. First, it achieves the capacity of any channel with state (e.g. asymmetric channels). Second, simulation results show that the proposed code achieves a smaller error rate compared to the nested linear code.
In this paper we consider $L_p$-approximation, $p \in \{2,\infty\}$, of periodic functions from weighted Korobov spaces. In particular, we discuss tractability properties of such problems, which means that we aim to relate the dependence of the information complexity on the error demand $\varepsilon$ and the dimension $d$ to the decay rate of the weight sequence $(\gamma_j)_{j \ge 1}$ assigned to the Korobov space. Some results have been well known since the beginning of this millennium, others have been proven quite recently. We give a survey of these findings and will add some new results on the $L_\infty$-approximation problem. To conclude, we give a concise overview of results and collect a number of interesting open problems.
Let $W$ be a binary-input memoryless symmetric (BMS) channel with Shannon capacity $I(W)$ and fix any $\alpha > 0$. We construct, for any sufficiently small $\delta > 0$, binary linear codes of block length $O(1/\delta^{2+\alpha})$ and rate $I(W)-\delta$ that enable reliable communication on $W$ with quasi-linear time encoding and decoding. Shannon's noisy coding theorem established the \emph{existence} of such codes (without efficient constructions or decoding) with block length $O(1/\delta^2)$. This quadratic dependence on the gap $\delta$ to capacity is known to be best possible. Our result thus yields a constructive version of Shannon's theorem with near-optimal convergence to capacity as a function of the block length. This resolves a central theoretical challenge associated with the attainment of Shannon capacity. Previously such a result was only known for the erasure channel. Our codes are a variant of Ar{\i}kan's polar codes based on multiple carefully constructed local kernels, one for each intermediate channel that arises in the decoding. A crucial ingredient in the analysis is a strong converse of the noisy coding theorem when communicating using random linear codes on arbitrary BMS channels. Our converse theorem shows extreme unpredictability of even a single message bit for random coding at rates slightly above capacity.
Hamiltonian cycles in graphs were first studied in the 1850s. Since then, an impressive amount of research has been dedicated to identifying classes of graphs that allow Hamiltonian cycles, and to related questions. The corresponding decision problem, that asks whether a given graph is Hamiltonian (i.\,e.\ admits a Hamiltonian cycle), is one of Karp's famous NP-complete problems. In this paper we study graphs of bounded degree that are \emph{far} from being Hamiltonian, where a graph $G$ on $n$ vertices is \emph{far} from being Hamiltonian, if modifying a constant fraction of $n$ edges is necessary to make $G$ Hamiltonian. We give an explicit deterministic construction of a class of graphs of bounded degree that are locally Hamiltonian, but (globally) far from being Hamiltonian. Here, \emph{locally Hamiltonian} means that every subgraph induced by the neighbourhood of a small vertex set appears in some Hamiltonian graph. More precisely, we obtain graphs which differ in $\Theta(n)$ edges from any Hamiltonian graph, but non-Hamiltonicity cannot be detected in the neighbourhood of $o(n)$ vertices. Our class of graphs yields a class of hard instances for one-sided error property testers with linear query complexity. It is known that any property tester (even with two-sided error) requires a linear number of queries to test Hamiltonicity (Yoshida, Ito, 2010). This is proved via a randomised construction of hard instances. In contrast, our construction is deterministic. So far only very few deterministic constructions of hard instances for property testing are known. We believe that our construction may lead to future insights in graph theory and towards a characterisation of the properties that are testable in the bounded-degree model.
\emph{$K$-best enumeration}, which asks to output $k$ best solutions without duplication, plays an important role in data analysis for many fields. In such fields, data can be typically represented by graphs, and thus subgraph enumeration has been paid much attention to. However, $k$-best enumeration tends to be intractable since, in many cases, finding one optimum solution is \NP-hard. To overcome this difficulty, we combine $k$-best enumeration with a new concept of enumeration algorithms called \emph{approximation enumeration algorithms}, which has been recently proposed. As a main result, we propose an $\alpha$-approximation algorithm for minimal connected edge dominating sets which outputs $k$ minimal solutions with cardinality at most $\alpha\cdot\overline{\rm OPT}$, where $\overline{\rm OPT}$ is the cardinality of a mini\emph{mum} solution which is \emph{not} outputted by the algorithm, and $\alpha$ is constant. Moreover, our proposed algorithm runs in $O(nm^2\Delta)$ delay, where $n$, $m$, $\Delta$ are the number of vertices, the number of edges, and the maximum degree of an input graph.
We establish a complete classification of binary group codes with complementary duals for a finite group and explicitly determine the number of linear complementary dual (LCD) cyclic group codes by using cyclotomic cosets. The dimension and the minimum distance for LCD group codes are explored. Finally, we find a connection between LCD MDS group codes and maximal ideals.