We study parallel repetition of k-player games where the constraints satisfy the projection property. We prove exponential decay in the value of a parallel repetition of projection games with value less than 1.
We show how continuous-depth neural ODE models can be framed as single-layer, infinite-width nets using the Chen--Fliess series expansion for nonlinear ODEs. In this net, the output ''weights'' are taken from the signature of the control input -- a tool used to represent infinite-dimensional paths as a sequence of tensors -- which comprises iterated integrals of the control input over a simplex. The ''features'' are taken to be iterated Lie derivatives of the output function with respect to the vector fields in the controlled ODE model. The main result of this work applies this framework to derive compact expressions for the Rademacher complexity of ODE models that map an initial condition to a scalar output at some terminal time. The result leverages the straightforward analysis afforded by single-layer architectures. We conclude with some examples instantiating the bound for some specific systems and discuss potential follow-up work.
Assessing performance in Natural Language Processing is becoming increasingly complex. One particular challenge is the potential for evaluation datasets to overlap with training data, either directly or indirectly, which can lead to skewed results and overestimation of model performance. As a consequence, human evaluation is gaining increasing interest as a means to assess the performance and reliability of models. One such method is the red teaming approach, which aims to generate edge cases where a model will produce critical errors. While this methodology is becoming standard practice for generative AI, its application to the realm of conditional AI remains largely unexplored. This paper presents the first study on human-based red teaming for Machine Translation (MT), marking a significant step towards understanding and improving the performance of translation models. We delve into both human-based red teaming and a study on automation, reporting lessons learned and providing recommendations for both translation models and red teaming drills. This pioneering work opens up new avenues for research and development in the field of MT.
This work addresses the challenge of democratizing advanced Large Language Models (LLMs) by compressing their mathematical reasoning capabilities into sub-billion parameter Small Language Models (SLMs) without compromising performance. We introduce Equation-of-Thought Distillation (EoTD), a novel technique that encapsulates the reasoning process into equation-based representations to construct an EoTD dataset for fine-tuning SLMs. Additionally, we propose the Ensemble Thoughts Distillation (ETD) framework to enhance the reasoning performance of SLMs. This involves creating a reasoning dataset with multiple thought processes, including Chain-of-Thought (CoT), Program-of-Thought (PoT), and Equation-of-Thought (EoT), and using it for fine-tuning. Our experimental findings demonstrate that EoTD significantly boosts the reasoning abilities of SLMs, while ETD enables these models to achieve state-of-the-art reasoning performance.
We study policy optimization algorithms for computing correlated equilibria in multi-player general-sum Markov Games. Previous results achieve $O(T^{-1/2})$ convergence rate to a correlated equilibrium and an accelerated $O(T^{-3/4})$ convergence rate to the weaker notion of coarse correlated equilibrium. In this paper, we improve both results significantly by providing an uncoupled policy optimization algorithm that attains a near-optimal $\tilde{O}(T^{-1})$ convergence rate for computing a correlated equilibrium. Our algorithm is constructed by combining two main elements (i) smooth value updates and (ii) the optimistic-follow-the-regularized-leader algorithm with the log barrier regularizer.
We study different notions of pointwise redundancy in variable-length lossy source coding. We present a construction of one-shot variable-length lossy source coding schemes using the Poisson functional representation, and give bounds on its pointwise redundancy for various definitions of pointwise redundancy. This allows us to describe the distribution of the encoding length in a precise manner. We also generalize the result to the one-shot lossy Gray-Wyner system.
Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.
The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.
Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.
Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.
Learning with limited data is a key challenge for visual recognition. Few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them is the target task. In this paper, we propose a novel approach to adapt the embedding model to the target classification task, yielding embeddings that are task-specific and are discriminative. To this end, we employ a type of self-attention mechanism called Transformer to transform the embeddings from task-agnostic to task-specific by focusing on relating instances from the test instances to the training instances in both seen and unseen classes. Our approach also extends to both transductive and generalized few-shot classification, two important settings that have essential use cases. We verify the effectiveness of our model on two standard benchmark few-shot classification datasets --- MiniImageNet and CUB, where our approach demonstrates state-of-the-art empirical performance.