Gesture synthesis has gained significant attention as a critical research area, focusing on producing contextually appropriate and natural gestures corresponding to speech or textual input. Although deep learning-based approaches have achieved remarkable progress, they often overlook the rich semantic information present in the text, leading to less expressive and meaningful gestures. We propose GesGPT, a novel approach to gesture generation that leverages the semantic analysis capabilities of Large Language Models (LLMs), such as GPT. By capitalizing on the strengths of LLMs for text analysis, we design prompts to extract gesture-related information from textual input. Our method entails developing prompt principles that transform gesture generation into an intention classification problem based on GPT, and utilizing a curated gesture library and integration module to produce semantically rich co-speech gestures. Experimental results demonstrate that GesGPT effectively generates contextually appropriate and expressive gestures, offering a new perspective on semantic co-speech gesture generation.
Interactive semantic parsing based on natural language (NL) feedback, where users provide feedback to correct the parser mistakes, has emerged as a more practical scenario than the traditional one-shot semantic parsing. However, prior work has heavily relied on human-annotated feedback data to train the interactive semantic parser, which is prohibitively expensive and not scalable. In this work, we propose a new task of simulating NL feedback for interactive semantic parsing. We accompany the task with a novel feedback evaluator. The evaluator is specifically designed to assess the quality of the simulated feedback, based on which we decide the best feedback simulator from our proposed variants. On a text-to-SQL dataset, we show that our feedback simulator can generate high-quality NL feedback to boost the error correction ability of a specific parser. In low-data settings, our feedback simulator can help achieve comparable error correction performance as trained using the costly, full set of human annotations.
Automatic discourse processing is bottlenecked by data: current discourse formalisms pose highly demanding annotation tasks involving large taxonomies of discourse relations, making them inaccessible to lay annotators. This work instead adopts the linguistic framework of Questions Under Discussion (QUD) for discourse analysis and seeks to derive QUD structures automatically. QUD views each sentence as an answer to a question triggered in prior context; thus, we characterize relationships between sentences as free-form questions, in contrast to exhaustive fine-grained taxonomies. We develop the first-of-its-kind QUD parser that derives a dependency structure of questions over full documents, trained using a large, crowdsourced question-answering dataset DCQA (Ko et al., 2022). Human evaluation results show that QUD dependency parsing is possible for language models trained with this crowdsourced, generalizable annotation scheme. We illustrate how our QUD structure is distinct from RST trees, and demonstrate the utility of QUD analysis in the context of document simplification. Our findings show that QUD parsing is an appealing alternative for automatic discourse processing.
Despite the fact that large-scale Language Models (LLM) have achieved SOTA performances on a variety of NLP tasks, its performance on NER is still significantly below supervised baselines. This is due to the gap between the two tasks the NER and LLMs: the former is a sequence labeling task in nature while the latter is a text-generation model. In this paper, we propose GPT-NER to resolve this issue. GPT-NER bridges the gap by transforming the sequence labeling task to a generation task that can be easily adapted by LLMs e.g., the task of finding location entities in the input text "Columbus is a city" is transformed to generate the text sequence "@@Columbus## is a city", where special tokens @@## marks the entity to extract. To efficiently address the "hallucination" issue of LLMs, where LLMs have a strong inclination to over-confidently label NULL inputs as entities, we propose a self-verification strategy by prompting LLMs to ask itself whether the extracted entities belong to a labeled entity tag. We conduct experiments on five widely adopted NER datasets, and GPT-NER achieves comparable performances to fully supervised baselines, which is the first time as far as we are concerned. More importantly, we find that GPT-NER exhibits a greater ability in the low-resource and few-shot setups, when the amount of training data is extremely scarce, GPT-NER performs significantly better than supervised models. This demonstrates the capabilities of GPT-NER in real-world NER applications where the number of labeled examples is limited.
Diffusion models, which have emerged to become popular text-to-image generation models, can produce high-quality and content-rich images guided by textual prompts. However, there are limitations to semantic understanding and commonsense reasoning in existing models when the input prompts are concise narrative, resulting in low-quality image generation. To improve the capacities for narrative prompts, we propose a simple-yet-effective parameter-efficient fine-tuning approach called the Semantic Understanding and Reasoning adapter (SUR-adapter) for pre-trained diffusion models. To reach this goal, we first collect and annotate a new dataset SURD which consists of more than 57,000 semantically corrected multi-modal samples. Each sample contains a simple narrative prompt, a complex keyword-based prompt, and a high-quality image. Then, we align the semantic representation of narrative prompts to the complex prompts and transfer knowledge of large language models (LLMs) to our SUR-adapter via knowledge distillation so that it can acquire the powerful semantic understanding and reasoning capabilities to build a high-quality textual semantic representation for text-to-image generation. We conduct experiments by integrating multiple LLMs and popular pre-trained diffusion models to show the effectiveness of our approach in enabling diffusion models to understand and reason concise natural language without image quality degradation. Our approach can make text-to-image diffusion models easier to use with better user experience, which demonstrates our approach has the potential for further advancing the development of user-friendly text-to-image generation models by bridging the semantic gap between simple narrative prompts and complex keyword-based prompts. The code is released at //github.com/Qrange-group/SUR-adapter.
In this work, we present a multimodal solution to the problem of 4D face reconstruction from monocular videos. 3D face reconstruction from 2D images is an under-constrained problem due to the ambiguity of depth. State-of-the-art methods try to solve this problem by leveraging visual information from a single image or video, whereas 3D mesh animation approaches rely more on audio. However, in most cases (e.g. AR/VR applications), videos include both visual and speech information. We propose AVFace that incorporates both modalities and accurately reconstructs the 4D facial and lip motion of any speaker, without requiring any 3D ground truth for training. A coarse stage estimates the per-frame parameters of a 3D morphable model, followed by a lip refinement, and then a fine stage recovers facial geometric details. Due to the temporal audio and video information captured by transformer-based modules, our method is robust in cases when either modality is insufficient (e.g. face occlusions). Extensive qualitative and quantitative evaluation demonstrates the superiority of our method over the current state-of-the-art.
Interactive machine learning (IML) allows users to build their custom machine learning models without expert knowledge. While most existing IML systems are designed with classification algorithms, they sometimes oversimplify the capabilities of machine learning algorithms and restrict the user's task definition. On the other hand, as recent large-scale language models have shown, natural language representation has the potential to enable more flexible and generic task descriptions. Models that take images as input and output text have the potential to represent a variety of tasks by providing appropriate text labels for training. However, the effect of introducing text labels to IML system design has never been investigated. In this work, we aim to investigate the difference between image-to-text translation and image classification for IML systems. Using our prototype systems, we conducted a comparative user study with non-expert users, where participants solved various tasks. Our results demonstrate the underlying difficulty for users in properly defining image recognition tasks while highlighting the potential and challenges of interactive image-to-text translation systems.
Dunhuang murals suffer from fading, breakage, surface brittleness and extensive peeling affected by prolonged environmental erosion. Image inpainting techniques are widely used in the field of digital mural inpainting. Generally speaking, for mural inpainting tasks with large area damage, it is challenging for any image inpainting method. In this paper, we design a multi-stage progressive reasoning network (MPR-Net) containing global to local receptive fields for murals inpainting. This network is capable of recursively inferring the damage boundary and progressively tightening the regional texture constraints. Moreover, to adaptively fuse plentiful information at various scales of murals, a multi-scale feature aggregation module (MFA) is designed to empower the capability to select the significant features. The execution of the model is similar to the process of a mural restorer (i.e., inpainting the structure of the damaged mural globally first and then adding the local texture details further). Our method has been evaluated through both qualitative and quantitative experiments, and the results demonstrate that it outperforms state-of-the-art image inpainting methods.
As a crucial component in task-oriented dialog systems, the Natural Language Generation (NLG) module converts a dialog act represented in a semantic form into a response in natural language. The success of traditional template-based or statistical models typically relies on heavily annotated data, which is infeasible for new domains. Therefore, it is pivotal for an NLG system to generalize well with limited labelled data in real applications. To this end, we present FewShotWoz, the first NLG benchmark to simulate the few-shot learning setting in task-oriented dialog systems. Further, we develop the SC-GPT model. It is pre-trained on a large set of annotated NLG corpus to acquire the controllable generation ability, and fine-tuned with only a few domain-specific labels to adapt to new domains. Experiments on FewShotWoz and the large Multi-Domain-WOZ datasets show that the proposed SC-GPT significantly outperforms existing methods, measured by various automatic metrics and human evaluations.
Extreme multi-label text classification (XMC) aims to tag each input text with the most relevant labels from an extremely large label set, such as those that arise in product categorization and e-commerce recommendation. Recently, pretrained language representation models such as BERT achieve remarkable state-of-the-art performance across a wide range of NLP tasks including sentence classification among small label sets (typically fewer than thousands). Indeed, there are several challenges in applying BERT to the XMC problem. The main challenges are: (i) the difficulty of capturing dependencies and correlations among labels, whose features may come from heterogeneous sources, and (ii) the tractability to scale to the extreme label setting as the model size can be very large and scale linearly with the size of the output space. To overcome these challenges, we propose X-BERT, the first feasible attempt to finetune BERT models for a scalable solution to the XMC problem. Specifically, X-BERT leverages both the label and document text to build label representations, which induces semantic label clusters in order to better model label dependencies. At the heart of X-BERT is finetuning BERT models to capture the contextual relations between input text and the induced label clusters. Finally, an ensemble of the different BERT models trained on heterogeneous label clusters leads to our best final model. Empirically, on a Wiki dataset with around 0.5 million labels, X-BERT achieves new state-of-the-art results where the precision@1 reaches 67:80%, a substantial improvement over 32.58%/60.91% of deep learning baseline fastText and competing XMC approach Parabel, respectively. This amounts to a 11.31% relative improvement over Parabel, which is indeed significant since the recent approach SLICE only has 5.53% relative improvement.
There is a resurgent interest in developing intelligent open-domain dialog systems due to the availability of large amounts of conversational data and the recent progress on neural approaches to conversational AI. Unlike traditional task-oriented bots, an open-domain dialog system aims to establish long-term connections with users by satisfying the human need for communication, affection, and social belonging. This paper reviews the recent works on neural approaches that are devoted to addressing three challenges in developing such systems: semantics, consistency, and interactiveness. Semantics requires a dialog system to not only understand the content of the dialog but also identify user's social needs during the conversation. Consistency requires the system to demonstrate a consistent personality to win users trust and gain their long-term confidence. Interactiveness refers to the system's ability to generate interpersonal responses to achieve particular social goals such as entertainment, conforming, and task completion. The works we select to present here is based on our unique views and are by no means complete. Nevertheless, we hope that the discussion will inspire new research in developing more intelligent dialog systems.