In-Context Learning (ICL) is an important paradigm for adapting Large Language Models (LLMs) to downstream tasks through a few demonstrations. Despite the great success of ICL, the limitation of the demonstration number may lead to demonstration bias, i.e. the input-label mapping induced by LLMs misunderstands the task's essence. Inspired by human experience, we attempt to mitigate such bias through the perspective of the inter-demonstration relationship. Specifically, we construct Comparable Demonstrations (CDs) by minimally editing the texts to flip the corresponding labels, in order to highlight the task's essence and eliminate potential spurious correlations through the inter-demonstration comparison. Through a series of experiments on CDs, we find that (1) demonstration bias does exist in LLMs, and CDs can significantly reduce such bias; (2) CDs exhibit good performance in ICL, especially in out-of-distribution scenarios. In summary, this study explores the ICL mechanisms from a novel perspective, providing a deeper insight into the demonstration selection strategy for ICL.
Adapting the Diffusion Probabilistic Model (DPM) for direct image super-resolution is wasteful, given that a simple Convolutional Neural Network (CNN) can recover the main low-frequency content. Therefore, we present ResDiff, a novel Diffusion Probabilistic Model based on Residual structure for Single Image Super-Resolution (SISR). ResDiff utilizes a combination of a CNN, which restores primary low-frequency components, and a DPM, which predicts the residual between the ground-truth image and the CNN predicted image. In contrast to the common diffusion-based methods that directly use LR images to guide the noise towards HR space, ResDiff utilizes the CNN's initial prediction to direct the noise towards the residual space between HR space and CNN-predicted space, which not only accelerates the generation process but also acquires superior sample quality. Additionally, a frequency-domain-based loss function for CNN is introduced to facilitate its restoration, and a frequency-domain guided diffusion is designed for DPM on behalf of predicting high-frequency details. The extensive experiments on multiple benchmark datasets demonstrate that ResDiff outperforms previous diffusion based methods in terms of shorter model convergence time, superior generation quality, and more diverse samples.
Leading models for the text-to-SQL task heavily rely on proprietary Large Language Models (LLMs), posing concerns over data privacy. Closing the performance gap between small open-source models and large proprietary models is crucial to mitigate this reliance. To this end, we introduce a novel two-stage fine-tuning approach that decomposes the task into two simpler tasks. Through comprehensive evaluation on two large cross-domain datasets and two small LLMs, we show that this approach improves execution accuracy by 3 to 7 percent, effectively aligning the performance of open-source models with their proprietary counterparts.
In patent prosecution, timely and effective responses to Office Actions (OAs) are crucial for acquiring patents, yet past automation and AI research have scarcely addressed this aspect. To address this gap, our study introduces the Patent Office Action Response Intelligence System (PARIS) and its advanced version, the Large Language Model Enhanced PARIS (LE-PARIS). These systems are designed to expedite the efficiency of patent attorneys in collaboratively handling OA responses. The systems' key features include the construction of an OA Topics Database, development of Response Templates, and implementation of Recommender Systems and LLM-based Response Generation. Our validation involves a multi-paradigmatic analysis using the USPTO Office Action database and longitudinal data of attorney interactions with our systems over six years. Through five studies, we examine the constructiveness of OA topics (studies 1 and 2) using topic modeling and the proposed Delphi process, the efficacy of our proposed hybrid recommender system tailored for OA (both LLM-based and non-LLM-based) (study 3), the quality of response generation (study 4), and the practical value of the systems in real-world scenarios via user studies (study 5). Results demonstrate that both PARIS and LE-PARIS significantly meet key metrics and positively impact attorney performance.
The Segment Anything Model (SAM) stands as a foundational framework for image segmentation. While it exhibits remarkable zero-shot generalization in typical scenarios, its advantage diminishes when applied to specialized domains like medical imagery and remote sensing. To address this limitation, this paper introduces Conv-LoRA, a simple yet effective parameter-efficient fine-tuning approach. By integrating ultra-lightweight convolutional parameters into Low-Rank Adaptation (LoRA), Conv-LoRA can inject image-related inductive biases into the plain ViT encoder, further reinforcing SAM's local prior assumption. Notably, Conv-LoRA not only preserves SAM's extensive segmentation knowledge but also revives its capacity of learning high-level image semantics, which is constrained by SAM's foreground-background segmentation pretraining. Comprehensive experimentation across diverse benchmarks spanning multiple domains underscores Conv-LoRA's superiority in adapting SAM to real-world semantic segmentation tasks.
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.
The Pretrained Foundation Models (PFMs) are regarded as the foundation for various downstream tasks with different data modalities. A pretrained foundation model, such as BERT, GPT-3, MAE, DALLE-E, and ChatGPT, is trained on large-scale data which provides a reasonable parameter initialization for a wide range of downstream applications. The idea of pretraining behind PFMs plays an important role in the application of large models. Different from previous methods that apply convolution and recurrent modules for feature extractions, the generative pre-training (GPT) method applies Transformer as the feature extractor and is trained on large datasets with an autoregressive paradigm. Similarly, the BERT apples transformers to train on large datasets as a contextual language model. Recently, the ChatGPT shows promising success on large language models, which applies an autoregressive language model with zero shot or few show prompting. With the extraordinary success of PFMs, AI has made waves in a variety of fields over the past few years. Considerable methods, datasets, and evaluation metrics have been proposed in the literature, the need is raising for an updated survey. This study provides a comprehensive review of recent research advancements, current and future challenges, and opportunities for PFMs in text, image, graph, as well as other data modalities. We first review the basic components and existing pretraining in natural language processing, computer vision, and graph learning. We then discuss other advanced PFMs for other data modalities and unified PFMs considering the data quality and quantity. Besides, we discuss relevant research about the fundamentals of the PFM, including model efficiency and compression, security, and privacy. Finally, we lay out key implications, future research directions, challenges, and open problems.
Graph Neural Networks (GNNs) have gained momentum in graph representation learning and boosted the state of the art in a variety of areas, such as data mining (\emph{e.g.,} social network analysis and recommender systems), computer vision (\emph{e.g.,} object detection and point cloud learning), and natural language processing (\emph{e.g.,} relation extraction and sequence learning), to name a few. With the emergence of Transformers in natural language processing and computer vision, graph Transformers embed a graph structure into the Transformer architecture to overcome the limitations of local neighborhood aggregation while avoiding strict structural inductive biases. In this paper, we present a comprehensive review of GNNs and graph Transformers in computer vision from a task-oriented perspective. Specifically, we divide their applications in computer vision into five categories according to the modality of input data, \emph{i.e.,} 2D natural images, videos, 3D data, vision + language, and medical images. In each category, we further divide the applications according to a set of vision tasks. Such a task-oriented taxonomy allows us to examine how each task is tackled by different GNN-based approaches and how well these approaches perform. Based on the necessary preliminaries, we provide the definitions and challenges of the tasks, in-depth coverage of the representative approaches, as well as discussions regarding insights, limitations, and future directions.
Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.
Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in incorrect outputs. To make DL more robust, several posthoc anomaly detection techniques to detect (and discard) these anomalous samples have been proposed in the recent past. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for DL based applications. We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches. We discuss various techniques in each of the categories and provide the relative strengths and weaknesses of the approaches. Our goal in this survey is to provide an easier yet better understanding of the techniques belonging to different categories in which research has been done on this topic. Finally, we highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.
Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.