Smart shoes have ushered in a new era of personalised health monitoring and assistive technology. The shoe leverages technologies such as Bluetooth for data collection and wireless transmission and incorporates features such as GPS tracking, obstacle detection, and fitness tracking. This article provides an overview of the current state of smart shoe technology, highlighting the integration of advanced sensors for health monitoring, energy harvesting, assistive features for the visually impaired, and deep learning for data analysis. The study discusses the potential of smart footwear in medical applications, particularly for patients with diabetes, and the ongoing research in this field. Current footwear challenges are also discussed, including complex construction, poor fit, comfort, and high cost.
The assumption of a static environment is common in many geometric computer vision tasks like SLAM but limits their applicability in highly dynamic scenes. Since these tasks rely on identifying point correspondences between input images within the static part of the environment, we propose a graph neural network-based sparse feature matching network designed to perform robust matching under challenging conditions while excluding keypoints on moving objects. We employ a similar scheme of attentional aggregation over graph edges to enhance keypoint representations as state-of-the-art feature-matching networks but augment the graph with epipolar and temporal information and vastly reduce the number of graph edges. Furthermore, we introduce a self-supervised training scheme to extract pseudo labels for image pairs in dynamic environments from exclusively unprocessed visual-inertial data. A series of experiments show the superior performance of our network as it excludes keypoints on moving objects compared to state-of-the-art feature matching networks while still achieving similar results regarding conventional matching metrics. When integrated into a SLAM system, our network significantly improves performance, especially in highly dynamic scenes.
As humanity pushes the boundaries of space exploration, human factors research becomes more important. Human factors encompass a broad spectrum of psychological, physiological, and ergonomic factors that affect human performance, well-being, and safety in the unique and challenging space environment. This panel explores the multifaceted field of human factors in space exploration and highlights the opportunities that lie in fostering international and interdisciplinary cooperation. This exploration delves into the current state of research on human factors in space missions, addressing the physiological and psychological challenges astronauts face during long space flights. It emphasizes the importance of interdisciplinary collaboration, combining knowledge from fields such as psychology, medicine, engineering, and design to address the complex interaction of factors affecting human performance and adaptation to the space environment
We prove that training neural networks on 1-D data is equivalent to solving a convex Lasso problem with a fixed, explicitly defined dictionary matrix of features. The specific dictionary depends on the activation and depth. We consider 2-layer networks with piecewise linear activations, deep narrow ReLU networks with up to 4 layers, and rectangular and tree networks with sign activation and arbitrary depth. Interestingly in ReLU networks, a fourth layer creates features that represent reflections of training data about themselves. The Lasso representation sheds insight to globally optimal networks and the solution landscape.
Customization generation techniques have significantly advanced the synthesis of specific concepts across varied contexts. Multi-concept customization emerges as the challenging task within this domain. Existing approaches often rely on training a Low-Rank Adaptations (LoRA) fusion matrix of multiple LoRA to merge various concepts into a single image. However, we identify this straightforward method faces two major challenges: 1) concept confusion, which occurs when the model cannot preserve distinct individual characteristics, and 2) concept vanishing, where the model fails to generate the intended subjects. To address these issues, we introduce LoRA-Composer, a training-free framework designed for seamlessly integrating multiple LoRAs, thereby enhancing the harmony among different concepts within generated images. LoRA-Composer addresses concept vanishing through Concept Injection Constraints, enhancing concept visibility via an expanded cross-attention mechanism. To combat concept confusion, Concept Isolation Constraints are introduced, refining the self-attention computation. Furthermore, Latent Re-initialization is proposed to effectively stimulate concept-specific latent within designated regions. Our extensive testing showcases a notable enhancement in LoRA-Composer's performance compared to standard baselines, especially when eliminating the image-based conditions like canny edge or pose estimations. Code is released at //github.com/Young98CN/LoRA\_Composer.
Swarm robots, which are inspired from the way insects behave collectively in order to achieve a common goal, have become a major part of research with applications involving search and rescue, area exploration, surveillance etc. In this paper, we present a swarm of robots that do not require individual extrinsic sensors to sense the environment but instead use a single central camera to locate and map the swarm. The robots can be easily built using readily available components with the main chassis being 3D printed, making the system low-cost, low-maintenance, and easy to replicate. We describe Zutu's hardware and software architecture, the algorithms to map the robots to the real world, and some experiments conducted using four of our robots. Eventually, we conclude the possible applications of our system in research, education, and industries.
Language technologies should be judged on their usefulness in real-world use cases. An often overlooked aspect in natural language processing (NLP) research and evaluation is language variation in the form of non-standard dialects or language varieties (hereafter, varieties). Most NLP benchmarks are limited to standard language varieties. To fill this gap, we propose DIALECTBENCH, the first-ever large-scale benchmark for NLP on varieties, which aggregates an extensive set of task-varied variety datasets (10 text-level tasks covering 281 varieties). This allows for a comprehensive evaluation of NLP system performance on different language varieties. We provide substantial evidence of performance disparities between standard and non-standard language varieties, and we also identify language clusters with large performance divergence across tasks. We believe DIALECTBENCH provides a comprehensive view of the current state of NLP for language varieties and one step towards advancing it further. Code/data: //github.com/ffaisal93/DialectBench
Integration of unmanned aerial vehicles (UAVs) for surveillance or monitoring applications into fifth generation (5G) New Radio (NR) cellular networks is an intriguing problem that has recently tackled a lot of interest in both academia and industry. For an efficient spectrum usage, we consider a recently-proposed sky-ground nonorthogonal multiple access (NOMA) scheme, where a cellular-connected UAV acting as aerial user (AU) and a static terrestrial user (TU) are paired to simultaneously transmit their uplink signals to a base station (BS) in the same time-frequency resource blocks. In such a case, due to the highly dynamic nature of the UAV, the signal transmitted by the AU experiences both time dispersion due to multipath propagation effects and frequency dispersion caused by Doppler shifts. On the other hand, for a static ground network, frequency dispersion of the signal transmitted by the TU is negligible and only multipath effects have to be taken into account. To decode the superposed signals at the BS through successive interference cancellation, accurate estimates of both the AU and TU channels are needed. In this paper, we propose channel estimation procedures that suitably exploit the different circular/noncircular modulation formats (modulation diversity) and the different almost-cyclostationarity features (Doppler diversity) of the AU and TU by means of widely-linear time-varying processing. Our estimation approach is semi-blind since Doppler shifts and time delays of the AU are estimated based on the received data only, whereas the remaining relevant parameters of the AU and TU channels are acquired relying also on the available training symbols. Monte Carlo numerical results demonstrate that the proposed channel estimation algorithms can satisfactorily acquire all the relevant parameters in different operative conditions.
Many studies have shown how ergonomically designed furniture improves productivity and well-being. As computers have become a part of students' academic lives, they will grow further in the future. We propose anthropometric-based furniture dimensions suitable for university students to improve computer laboratory ergonomics. We collected data from 380 participants and analyzed 11 anthropometric measurements, correlating them to 11 furniture dimensions. Two types of furniture were studied: a non-adjustable chair with a non-adjustable table and an adjustable chair with a non-adjustable table. The mismatch calculation showed a significant difference between furniture dimensions and anthropometric measurements. The one-way ANOVA test with a significance level of 5% also showed a significant difference between proposed and existing furniture dimensions. The proposed dimensions were found to be more compatible and reduced mismatch percentages for both males and females compared to existing furniture. The proposed dimensions of the furniture set with adjustable seat height showed slightly improved results compared to the non-adjustable furniture set. This suggests that the proposed dimensions can improve comfort levels and reduce the risk of musculoskeletal disorders among students. Further studies on the implementation and long-term effects of these proposed dimensions in real-world computer laboratory settings are recommended.
Large-scale password data breaches are becoming increasingly commonplace, which has enabled researchers to produce a substantial body of password security research utilising real-world password datasets, which often contain numbers of records in the tens or even hundreds of millions. While much study has been conducted on how password composition policies (sets of rules that a user must abide by when creating a password) influence the distribution of user-chosen passwords on a system, much less research has been done on inferring the password composition policy that a given set of user-chosen passwords was created under. In this paper, we state the problem with the naive approach to this challenge, and suggest a simple approach that produces more reliable results. We also present pol-infer, a tool that implements this approach, and demonstrates its use in inferring password composition policies.
Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.