亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Efficient numerical solvers for partial differential equations empower science and engineering. One of the commonly employed numerical solvers is the preconditioned conjugate gradient (PCG) algorithm which can solve large systems to a given precision level. One challenge in PCG solvers is the selection of preconditioners, as different problem-dependent systems can benefit from different preconditioners. We present a new method to introduce \emph{inductive bias} in preconditioning conjugate gradient algorithm. Given a system matrix and a set of solution vectors arise from an underlying distribution, we train a graph neural network to obtain an approximate decomposition to the system matrix to be used as a preconditioner in the context of PCG solvers. We conduct extensive experiments to demonstrate the efficacy and generalizability of our proposed approach in solving various 2D and 3D linear second-order PDEs.

相關內容

Continual Federated Learning (CFL) combines Federated Learning (FL), the decentralized learning of a central model on a number of client devices that may not communicate their data, and Continual Learning (CL), the learning of a model from a continual stream of data without keeping the entire history. In CL, the main challenge is \textit{forgetting} what was learned from past data. While replay-based algorithms that keep a small pool of past training data are effective to reduce forgetting, only simple replay sample selection strategies have been applied to CFL in prior work, and no previous work has explored coordination among clients for better sample selection. To bridge this gap, we adapt a replay sample selection objective based on loss gradient diversity to CFL and propose a new relaxation-based selection of samples to optimize the objective. Next, we propose a practical algorithm to coordinate gradient-based replay sample selection across clients without communicating private data. We benchmark our coordinated and uncoordinated replay sample selection algorithms against random sampling-based baselines with language models trained on a large scale de-identified real-world text dataset. We show that gradient-based sample selection methods both boost performance and reduce forgetting compared to random sampling methods, with our coordination method showing gains early in the low replay size regime (when the budget for storing past data is small).

This article discusses the uncertainty quantification (UQ) for time-independent linear and nonlinear partial differential equation (PDE)-based systems with random model parameters carried out using sampling-free intrusive stochastic Galerkin method leveraging multilevel scalable solvers constructed combining two-grid Schwarz method and AMG. High-resolution spatial meshes along with a large number of stochastic expansion terms increase the system size leading to significant memory consumption and computational costs. Domain decomposition (DD)-based parallel scalable solvers are developed to this end for linear and nonlinear stochastic PDEs. A generalized minimum residual (GMRES) iterative solver equipped with a multilevel preconditioner consisting of restricted additive Schwarz (RAS) for the fine grid and algebraic multigrid (AMG) for the coarse grid is constructed to improve scalability. Numerical experiments illustrate the scalabilities of the proposed solver for stochastic linear and nonlinear Poisson problems.

To promote the generalization ability of breast tumor segmentation models, as well as to improve the segmentation performance for breast tumors with smaller size, low-contrast amd irregular shape, we propose a progressive dual priori network (PDPNet) to segment breast tumors from dynamic enhanced magnetic resonance images (DCE-MRI) acquired at different sites. The PDPNet first cropped tumor regions with a coarse-segmentation based localization module, then the breast tumor mask was progressively refined by using the weak semantic priori and cross-scale correlation prior knowledge. To validate the effectiveness of PDPNet, we compared it with several state-of-the-art methods on multi-center datasets. The results showed that, comparing against the suboptimal method, the DSC, SEN, KAPPA and HD95 of PDPNet were improved 3.63\%, 8.19\%, 5.52\%, and 3.66\% respectively. In addition, through ablations, we demonstrated that the proposed localization module can decrease the influence of normal tissues and therefore improve the generalization ability of the model. The weak semantic priors allow focusing on tumor regions to avoid missing small tumors and low-contrast tumors. The cross-scale correlation priors are beneficial for promoting the shape-aware ability for irregual tumors. Thus integrating them in a unified framework improved the multi-center breast tumor segmentation performance.

As machine learning models become more capable, they have exhibited increased potential in solving complex tasks. One of the most promising directions uses deep reinforcement learning to train autonomous agents in computer network defense tasks. This work studies the impact of the reward signal that is provided to the agents when training for this task. Due to the nature of cybersecurity tasks, the reward signal is typically 1) in the form of penalties (e.g., when a compromise occurs), and 2) distributed sparsely across each defense episode. Such reward characteristics are atypical of classic reinforcement learning tasks where the agent is regularly rewarded for progress (cf. to getting occasionally penalized for failures). We investigate reward shaping techniques that could bridge this gap so as to enable agents to train more sample-efficiently and potentially converge to a better performance. We first show that deep reinforcement learning algorithms are sensitive to the magnitude of the penalties and their relative size. Then, we combine penalties with positive external rewards and study their effect compared to penalty-only training. Finally, we evaluate intrinsic curiosity as an internal positive reward mechanism and discuss why it might not be as advantageous for high-level network monitoring tasks.

A novel recurrence formula for moments with respect to M\"{u}ntz-Legendre polynomials is proposed and applied to construct a numerical method for solving generalized Gauss quadratures with power function weight for M\"{u}ntz systems. These quadrature rules exhibit several properties similar to the classical Gaussian quadratures for polynomial systems, including positive weights, rapid convergence, and others. They are applicable to a wide range of functions, including smooth functions and functions with endpoint singularities, commonly found in integral equations with singular kernels, complex analysis, potential theory, and other areas.

We propose a differentiable vertex fitting algorithm that can be used for secondary vertex fitting, and that can be seamlessly integrated into neural networks for jet flavour tagging. Vertex fitting is formulated as an optimization problem where gradients of the optimized solution vertex are defined through implicit differentiation and can be passed to upstream or downstream neural network components for network training. More broadly, this is an application of differentiable programming to integrate physics knowledge into neural network models in high energy physics. We demonstrate how differentiable secondary vertex fitting can be integrated into larger transformer-based models for flavour tagging and improve heavy flavour jet classification.

Sequential transfer optimization (STO), which aims to improve the optimization performance on a task of interest by exploiting the knowledge captured from several previously-solved optimization tasks stored in a database, has been gaining increasing research attention over the years. However, despite the remarkable advances in algorithm design, the development of a systematic benchmark suite for comprehensive comparisons of STO algorithms received far less attention. Existing test problems are either simply generated by assembling other benchmark functions or extended from specific practical problems with limited scalability. The relationships between the optimal solutions of the source and target tasks in these problems are also often manually configured, limiting their ability to model different similarity relationships presented in real-world problems. Consequently, the good performance achieved by an algorithm on these problems might be biased and hard to be generalized to other problems. In light of the above, in this study, we first introduce four concepts for characterizing STO problems and present an important problem feature, namely similarity distribution, which quantitatively delineates the relationship between the optima of the source and target tasks. Then, we present the general design guidelines of STO problems and a particular STO problem generator with good scalability. Specifically, the similarity distribution of a problem can be easily customized, enabling a continuous spectrum of representation of the diverse similarity relationships of real-world problems. Lastly, a benchmark suite with 12 STO problems featured by a variety of customized similarity relationships is developed using the proposed generator. The source code of the problem generator is available at //github.com/XmingHsueh/STOP-G.

Bayesian hypothesis testing leverages posterior probabilities, Bayes factors, or credible intervals to assess characteristics that summarize data. We propose a framework for power curve approximation with such hypothesis tests that assumes data are generated using statistical models with fixed parameters for the purposes of sample size determination. We present a fast approach to explore the sampling distribution of posterior probabilities when the conditions for the Bernstein-von Mises theorem are satisfied. We extend that approach to facilitate targeted sampling from the approximate sampling distribution of posterior probabilities for each sample size explored. These sampling distributions are used to construct power curves for various types of posterior analyses. Our resulting method for power curve approximation is orders of magnitude faster than conventional power curve estimation for Bayesian hypothesis tests. We also prove the consistency of the corresponding power estimates and sample size recommendations under certain conditions.

Most existing parametric query optimization (PQO) techniques rely on traditional query optimizer cost models, which are often inaccurate and result in suboptimal query performance. We propose Kepler, an end-to-end learning-based approach to PQO that demonstrates significant speedups in query latency over a traditional query optimizer. Central to our method is Row Count Evolution (RCE), a novel plan generation algorithm based on perturbations in the sub-plan cardinality space. While previous approaches require accurate cost models, we bypass this requirement by evaluating candidate plans via actual execution data and training an ML model to predict the fastest plan given parameter binding values. Our models leverage recent advances in neural network uncertainty in order to robustly predict faster plans while avoiding regressions in query performance. Experimentally, we show that Kepler achieves significant improvements in query runtime on multiple datasets on PostgreSQL.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

北京阿比特科技有限公司