High dimensional non-Gaussian time series data are increasingly encountered in a wide range of applications. Conventional estimation methods and technical tools are inadequate when it comes to ultra high dimensional and heavy-tailed data. We investigate robust estimation of high dimensional autoregressive models with fat-tailed innovation vectors by solving a regularized regression problem using convex robust loss function. As a significant improvement, the dimension can be allowed to increase exponentially with the sample size to ensure consistency under very mild moment conditions. To develop the consistency theory, we establish a new Bernstein type inequality for the sum of autoregressive models. Numerical results indicate a good performance of robust estimates.
We consider the problem of finding tuned regularized parameter estimators for linear models. We start by showing that three known optimal linear estimators belong to a wider class of estimators that can be formulated as a solution to a weighted and constrained minimization problem. The optimal weights, however, are typically unknown in many applications. This begs the question, how should we choose the weights using only the data? We propose using the covariance fitting SPICE-methodology to obtain data-adaptive weights and show that the resulting class of estimators yields tuned versions of known regularized estimators - such as ridge regression, LASSO, and regularized least absolute deviation. These theoretical results unify several important estimators under a common umbrella. The resulting tuned estimators are also shown to be practically relevant by means of a number of numerical examples.
Tilt-series alignment is crucial to obtaining high-resolution reconstructions in cryo-electron tomography. Beam-induced local deformation of the sample is hard to estimate from the low-contrast sample alone, and often requires fiducial gold bead markers. The state-of-the-art approach for deformation estimation uses (semi-)manually labelled marker locations in projection data to fit the parameters of a polynomial deformation model. Manually-labelled marker locations are difficult to obtain when data are noisy or markers overlap in projection data. We propose an alternative mathematical approach for simultaneous marker localization and deformation estimation by extending a grid-free super-resolution algorithm first proposed in the context of single-molecule localization microscopy. Our approach does not require labelled marker locations; instead, we use an image-based loss where we compare the forward projection of markers with the observed data. We equip this marker localization scheme with an additional deformation estimation component and solve for a reduced number of deformation parameters. Using extensive numerical studies on marker-only samples, we show that our approach automatically finds markers and reliably estimates sample deformation without labelled marker data. We further demonstrate the applicability of our approach for a broad range of model mismatch scenarios, including experimental electron tomography data of gold markers on ice.
Continuous determinantal point processes (DPPs) are a class of repulsive point processes on $\mathbb{R}^d$ with many statistical applications. Although an explicit expression of their density is known, it is too complicated to be used directly for maximum likelihood estimation. In the stationary case, an approximation using Fourier series has been suggested, but it is limited to rectangular observation windows and no theoretical results support it. In this contribution, we investigate a different way to approximate the likelihood by looking at its asymptotic behaviour when the observation window grows towards $\mathbb{R}^d$. This new approximation is not limited to rectangular windows, is faster to compute than the previous one, does not require any tuning parameter, and some theoretical justifications are provided. It moreover provides an explicit formula for estimating the asymptotic variance of the associated estimator. The performances are assessed in a simulation study on standard parametric models on $\mathbb{R}^d$ and compare favourably to common alternative estimation methods for continuous DPPs.
In health-pollution cohort studies, accurate predictions of pollutant concentrations at new locations are needed, since the locations of fixed monitoring sites and study participants are often spatially misaligned. For multi-pollution data, principal component analysis (PCA) is often incorporated to obtain low-rank (LR) structure of the data prior to spatial prediction. Recently developed predictive PCA modifies the traditional algorithm to improve the overall predictive performance by leveraging both LR and spatial structures within the data. However, predictive PCA requires complete data or an initial imputation step. Nonparametric imputation techniques without accounting for spatial information may distort the underlying structure of the data, and thus further reduce the predictive performance. We propose a convex optimization problem inspired by the LR matrix completion framework and develop a proximal algorithm to solve it. Missing data are imputed and handled concurrently within the algorithm, which eliminates the necessity of a separate imputation step. We show that our algorithm has low computational burden and leads to reliable predictive performance as the severity of missing data increases.
This paper concerns the Time-Domain Full Waveform Inversion (FWI) for dispersive and dissipative poroelastic materials. The forward problem is an initial boundary value problem (IBVP) of the poroelastic equations with a memory term; the FWI is formulated as a minimization problem of a least-square misfit function with the (IBVP) as the constraint. In this paper, we derive the adjoint problem of this minimization problem, whose solution can be applied to computed the direction of steepest descent in the iterative process for minimization. The adjoint problem has a similar numerical structure as the forward problem and hence can be solved by the same numerical solver. Because the tracking of the energy evolution plays an important role in the FWI for dissipative and dispersive equations, the energy analysis of the forward system is also carried out in this paper.
We study the robust mean estimation problem in high dimensions, where less than half of the datapoints can be arbitrarily corrupted. Motivated by compressive sensing, we formulate the robust mean estimation problem as the minimization of the $\ell_0$-`norm' of an \emph{outlier indicator vector}, under a second moment constraint on the datapoints. We further relax the $\ell_0$-`norm' to the $\ell_p$-norm ($0<p\leq 1$) in the objective and prove that the global minima for each of these objectives are order-optimal for the robust mean estimation problem. Then we propose a computationally tractable iterative $\ell_p$-minimization and hard thresholding algorithm that outputs an order-optimal robust estimate of the population mean. Both synthetic and real data experiments demonstrate that the proposed algorithm outperforms state-of-the-art robust mean estimation methods. The source code will be made available at GitHub.
This paper studies the inference of the regression coefficient matrix under multivariate response linear regressions in the presence of hidden variables. A novel procedure for constructing confidence intervals of entries of the coefficient matrix is proposed. Our method first utilizes the multivariate nature of the responses by estimating and adjusting the hidden effect to construct an initial estimator of the coefficient matrix. By further deploying a low-dimensional projection procedure to reduce the bias introduced by the regularization in the previous step, a refined estimator is proposed and shown to be asymptotically normal. The asymptotic variance of the resulting estimator is derived with closed-form expression and can be consistently estimated. In addition, we propose a testing procedure for the existence of hidden effects and provide its theoretical justification. Both our procedures and their analyses are valid even when the feature dimension and the number of responses exceed the sample size. Our results are further backed up via extensive simulations and a real data analysis.
The Student-$t$ distribution is widely used in statistical modeling of datasets involving outliers since its longer-than-normal tails provide a robust approach to hand such data. Furthermore, data collected over time may contain censored or missing observations, making it impossible to use standard statistical procedures. This paper proposes an algorithm to estimate the parameters of a censored linear regression model when the regression errors are autocorrelated and the innovations follow a Student-$t$ distribution. To fit the proposed model, maximum likelihood estimates are obtained throughout the SAEM algorithm, which is a stochastic approximation of the EM algorithm useful for models in which the E-step does not have an analytic form. The methods are illustrated by the analysis of a real dataset that has left-censored and missing observations. We also conducted two simulations studies to examine the asymptotic properties of the estimates and the robustness of the model.
Heatmap-based methods dominate in the field of human pose estimation by modelling the output distribution through likelihood heatmaps. In contrast, regression-based methods are more efficient but suffer from inferior performance. In this work, we explore maximum likelihood estimation (MLE) to develop an efficient and effective regression-based methods. From the perspective of MLE, adopting different regression losses is making different assumptions about the output density function. A density function closer to the true distribution leads to a better regression performance. In light of this, we propose a novel regression paradigm with Residual Log-likelihood Estimation (RLE) to capture the underlying output distribution. Concretely, RLE learns the change of the distribution instead of the unreferenced underlying distribution to facilitate the training process. With the proposed reparameterization design, our method is compatible with off-the-shelf flow models. The proposed method is effective, efficient and flexible. We show its potential in various human pose estimation tasks with comprehensive experiments. Compared to the conventional regression paradigm, regression with RLE bring 12.4 mAP improvement on MSCOCO without any test-time overhead. Moreover, for the first time, especially on multi-person pose estimation, our regression method is superior to the heatmap-based methods. Our code is available at //github.com/Jeff-sjtu/res-loglikelihood-regression
Robust estimation is much more challenging in high dimensions than it is in one dimension: Most techniques either lead to intractable optimization problems or estimators that can tolerate only a tiny fraction of errors. Recent work in theoretical computer science has shown that, in appropriate distributional models, it is possible to robustly estimate the mean and covariance with polynomial time algorithms that can tolerate a constant fraction of corruptions, independent of the dimension. However, the sample and time complexity of these algorithms is prohibitively large for high-dimensional applications. In this work, we address both of these issues by establishing sample complexity bounds that are optimal, up to logarithmic factors, as well as giving various refinements that allow the algorithms to tolerate a much larger fraction of corruptions. Finally, we show on both synthetic and real data that our algorithms have state-of-the-art performance and suddenly make high-dimensional robust estimation a realistic possibility.