In credit scoring, machine learning models are known to outperform standard parametric models. As they condition access to credit, banking supervisors and internal model validation teams need to monitor their predictive performance and to identify the features with the highest impact on performance. To facilitate this, we introduce the XPER methodology to decompose a performance metric (e.g., AUC, $R^2$) into specific contributions associated with the various features of a classification or regression model. XPER is theoretically grounded on Shapley values and is both model-agnostic and performance metric-agnostic. Furthermore, it can be implemented either at the model level or at the individual level. Using a novel dataset of car loans, we decompose the AUC of a machine-learning model trained to forecast the default probability of loan applicants. We show that a small number of features can explain a surprisingly large part of the model performance. Furthermore, we find that the features that contribute the most to the predictive performance of the model may not be the ones that contribute the most to individual forecasts (SHAP). We also show how XPER can be used to deal with heterogeneity issues and significantly boost out-of-sample performance.
Counterfactual (CF) explanations for machine learning (ML) models are preferred by end-users, as they explain the predictions of ML models by providing a recourse (or contrastive) case to individuals who are adversely impacted by predicted outcomes. Existing CF explanation methods generate recourses under the assumption that the underlying target ML model remains stationary over time. However, due to commonly occurring distributional shifts in training data, ML models constantly get updated in practice, which might render previously generated recourses invalid and diminish end-users trust in our algorithmic framework. To address this problem, we propose RoCourseNet, a training framework that jointly optimizes predictions and recourses that are robust to future data shifts. This work contains four key contributions: (1) We formulate the robust recourse generation problem as a tri-level optimization problem which consists of two sub-problems: (i) a bi-level problem that finds the worst-case adversarial shift in the training data, and (ii) an outer minimization problem to generate robust recourses against this worst-case shift. (2) We leverage adversarial training to solve this tri-level optimization problem by: (i) proposing a novel virtual data shift (VDS) algorithm to find worst-case shifted ML models via explicitly considering the worst-case data shift in the training dataset, and (ii) a block-wise coordinate descent procedure to optimize for prediction and corresponding robust recourses. (3) We evaluate RoCourseNet's performance on three real-world datasets, and show that RoCourseNet consistently achieves more than 96% robust validity and outperforms state-of-the-art baselines by at least 10% in generating robust CF explanations. (4) Finally, we generalize the RoCourseNet framework to accommodate any parametric post-hoc methods for improving robust validity.
Deep Neural Networks are prone to learning spurious correlations embedded in the training data, leading to potentially biased predictions. This poses risks when deploying these models for high-stake decision-making, such as in medical applications. Current methods for post-hoc model correction either require input-level annotations, which are only possible for spatially localized biases, or augment the latent feature space, thereby hoping to enforce the right reasons. We present a novel method ensuring the right reasons on the concept level by reducing the model's sensitivity towards biases through the gradient. When modeling biases via Concept Activation Vectors, we highlight the importance of choosing robust directions, as traditional regression-based approaches such as Support Vector Machines tend to result in diverging directions. We effectively mitigate biases in controlled and real-world settings on the ISIC, Bone Age, ImageNet and CelebA datasets using VGG, ResNet and EfficientNet architectures.
In recent years, neural code translation has gained increasing attention. While most of the research focuses on improving model architectures and training processes, we notice that the evaluation process and benchmark for code translation models are severely limited: they primarily treat source code as natural languages and provide a holistic accuracy score while disregarding the full spectrum of model capabilities across different translation types and complexity. In this paper, we present a comprehensive investigation of four state-of-the-art models and analyze in-depth the advantages and limitations of three existing benchmarks. Based on the empirical results, we develop a taxonomy that categorizes code translation tasks into four primary types according to their complexity and knowledge dependence: token level (type 1), syntactic level (type 2), library level (type 3), and algorithm level (type 4). We then conduct a thorough analysis of how existing approaches perform across these four categories. Our findings indicate that while state-of-the-art code translation models excel in type-1 and type-2 translations, they struggle with knowledge-dependent ones such as type-3 and type-4. Existing benchmarks are biased towards trivial translations, such as keyword mapping. To overcome these limitations, we construct G-TransEval, a new benchmark by manually curating type-3 and type-4 translation pairs and unit test cases. Results on our new benchmark suggest that G-TransEval can exhibit more comprehensive and finer-grained capability of code translation models and thus provide a more rigorous evaluation. Our studies also provide more insightful findings and suggestions for future research, such as building type-3 and type-4 training data and ensembling multiple pretraining approaches.
We investigate the emergent abilities of the recently proposed web-scale speech model Whisper, by adapting it to unseen tasks with prompt engineering. We selected three tasks: audio-visual speech recognition (AVSR), code-switched speech recognition (CS-ASR), and speech translation (ST) on unseen language pairs. We design task-specific prompts, by either leveraging another large-scale model, or simply manipulating the special tokens in the default prompts. Experiments show that compared to the default prompts, our proposed prompts improve performance by 10% to 45% on the three zero-shot tasks, and even outperform SotA supervised models on some datasets. In addition, our experiments reveal many interesting properties of Whisper, including its robustness to prompts, bias on accents, and the multilingual understanding in its latent space. Code is available at //github.com/jasonppy/PromptingWhisper
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.
Deep neural networks (DNNs) have become a proven and indispensable machine learning tool. As a black-box model, it remains difficult to diagnose what aspects of the model's input drive the decisions of a DNN. In countless real-world domains, from legislation and law enforcement to healthcare, such diagnosis is essential to ensure that DNN decisions are driven by aspects appropriate in the context of its use. The development of methods and studies enabling the explanation of a DNN's decisions has thus blossomed into an active, broad area of research. A practitioner wanting to study explainable deep learning may be intimidated by the plethora of orthogonal directions the field has taken. This complexity is further exacerbated by competing definitions of what it means ``to explain'' the actions of a DNN and to evaluate an approach's ``ability to explain''. This article offers a field guide to explore the space of explainable deep learning aimed at those uninitiated in the field. The field guide: i) Introduces three simple dimensions defining the space of foundational methods that contribute to explainable deep learning, ii) discusses the evaluations for model explanations, iii) places explainability in the context of other related deep learning research areas, and iv) finally elaborates on user-oriented explanation designing and potential future directions on explainable deep learning. We hope the guide is used as an easy-to-digest starting point for those just embarking on research in this field.
Despite its great success, machine learning can have its limits when dealing with insufficient training data. A potential solution is the additional integration of prior knowledge into the training process which leads to the notion of informed machine learning. In this paper, we present a structured overview of various approaches in this field. We provide a definition and propose a concept for informed machine learning which illustrates its building blocks and distinguishes it from conventional machine learning. We introduce a taxonomy that serves as a classification framework for informed machine learning approaches. It considers the source of knowledge, its representation, and its integration into the machine learning pipeline. Based on this taxonomy, we survey related research and describe how different knowledge representations such as algebraic equations, logic rules, or simulation results can be used in learning systems. This evaluation of numerous papers on the basis of our taxonomy uncovers key methods in the field of informed machine learning.
Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.