亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we examine the linguistic signature of online racial microaggressions (acts) and how it differs from that of personal narratives recalling experiences of such aggressions (recalls) by Black social media users. We manually curate and annotate a corpus of acts and recalls from in-the-wild social media discussions, and verify labels with Black workshop participants. We leverage Natural Language Processing (NLP) and qualitative analysis on this data to classify (RQ1), interpret (RQ2), and characterize (RQ3) the language underlying acts and recalls of racial microaggressions in the context of racism in the U.S. Our findings show that neural language models (LMs) can classify acts and recalls with high accuracy (RQ1) with contextual words revealing themes that associate Blacks with objects that reify negative stereotypes (RQ2). Furthermore, overlapping linguistic signatures between acts and recalls serve functionally different purposes (RQ3), providing broader implications to the current challenges in content moderation systems on social media.

相關內容

In this critical survey, we analyze typical claims on the relationship between explainable AI (XAI) and fairness to disentangle the multidimensional relationship between these two concepts. Based on a systematic literature review and a subsequent qualitative content analysis, we identify seven archetypal claims from 175 scientific articles on the alleged fairness benefits of XAI. We present crucial caveats with respect to these claims and provide an entry point for future discussions around the potentials and limitations of XAI for specific fairness desiderata. Importantly, we notice that claims are often (i) vague and simplistic, (ii) lacking normative grounding, or (iii) poorly aligned with the actual capabilities of XAI. We suggest to conceive XAI not as an ethical panacea but as one of many tools to approach the multidimensional, sociotechnical challenge of algorithmic fairness. Moreover, when making a claim about XAI and fairness, we emphasize the need to be more specific about what kind of XAI method is used, which fairness desideratum it refers to, how exactly it enables fairness, and who is the stakeholder that benefits from XAI.

In this study, we present an implementation strategy for a robot that performs peg transfer tasks in Fundamentals of Laparoscopic Surgery (FLS) via imitation learning, aimed at the development of an autonomous robot for laparoscopic surgery. Robotic laparoscopic surgery presents two main challenges: (1) the need to manipulate forceps using ports established on the body surface as fulcrums, and (2) difficulty in perceiving depth information when working with a monocular camera that displays its images on a monitor. Especially, regarding issue (2), most prior research has assumed the availability of depth images or models of a target to be operated on. Therefore, in this study, we achieve more accurate imitation learning with only monocular images by extracting motion constraints from one exemplary motion of skilled operators, collecting data based on these constraints, and conducting imitation learning based on the collected data. We implemented an overall system using two Franka Emika Panda Robot Arms and validated its effectiveness.

In this work, we introduce Brain Latent Progression (BrLP), a novel spatiotemporal disease progression model based on latent diffusion. BrLP is designed to predict the evolution of diseases at the individual level on 3D brain MRIs. Existing deep generative models developed for this task are primarily data-driven and face challenges in learning disease progressions. BrLP addresses these challenges by incorporating prior knowledge from disease models to enhance the accuracy of predictions. To implement this, we propose to integrate an auxiliary model that infers volumetric changes in various brain regions. Additionally, we introduce Latent Average Stabilization (LAS), a novel technique to improve spatiotemporal consistency of the predicted progression. BrLP is trained and evaluated on a large dataset comprising 11,730 T1-weighted brain MRIs from 2,805 subjects, collected from three publicly available, longitudinal Alzheimer's Disease (AD) studies. In our experiments, we compare the MRI scans generated by BrLP with the actual follow-up MRIs available from the subjects, in both cross-sectional and longitudinal settings. BrLP demonstrates significant improvements over existing methods, with an increase of 22% in volumetric accuracy across AD-related brain regions and 43% in image similarity to the ground-truth scans. The ability of BrLP to generate conditioned 3D scans at the subject level, along with the novelty of integrating prior knowledge to enhance accuracy, represents a significant advancement in disease progression modeling, opening new avenues for precision medicine. The code of BrLP is available at the following link: //github.com/LemuelPuglisi/BrLP.

In this paper, we investigate unsourced random access for massive machine-type communications (mMTC) in the sixth-generation (6G) wireless networks. Firstly, we establish a high-efficiency uncoupled framework for massive unsourced random access without extra parity check bits. Then, we design a low-complexity Bayesian joint decoding algorithm, including codeword detection and stitching. In particular, we present a Bayesian codeword detection approach by exploiting Bayes-optimal divergence-free orthogonal approximate message passing in the case of unknown priors. The output long-term channel statistic information is well leveraged to stitch codewords for recovering the original message. Thus, the spectral efficiency is improved by avoiding the use of parity bits. Moreover, we analyze the performance of the proposed Bayesian joint decoding-based massive uncoupled unsourced random access scheme in terms of computational complexity and error probability of decoding. Furthermore, by asymptotic analysis, we obtain some useful insights for the design of massive unsourced random access. Finally, extensive simulation results confirm the effectiveness of the proposed scheme in 6G wireless networks.

Motivated by information sharing in online platforms, we study repeated persuasion between a sender and a stream of receivers where at each time, the sender observes a payoff-relevant state drawn independently and identically from an unknown distribution, and shares state information with the receivers who each choose an action. The sender seeks to persuade the receivers into taking actions aligned with the sender's preference by selectively sharing state information. However, in contrast to the standard models, neither the sender nor the receivers know the distribution, and the sender has to persuade while learning the distribution on the fly. We study the sender's learning problem of making persuasive action recommendations to achieve low regret against the optimal persuasion mechanism with the knowledge of the distribution. To do this, we first propose and motivate a persuasiveness criterion for the unknown distribution setting that centers robustness as a requirement in the face of uncertainty. Our main result is an algorithm that, with high probability, is robustly-persuasive and achieves $O(\sqrt{T\log T})$ regret, where $T$ is the horizon length. Intuitively, at each time our algorithm maintains a set of candidate distributions, and chooses a signaling mechanism that is simultaneously persuasive for all of them. Core to our proof is a tight analysis about the cost of robust persuasion, which may be of independent interest. We further prove that this regret order is optimal (up to logarithmic terms) by showing that no algorithm can achieve regret better than $\Omega(\sqrt{T})$.

In this study, we investigate the causal effect of financial literacy education on a composite financial health score constructed from 17 self-reported financial health and distress metrics ranging from spending habits to confidence in ability to repay debt to day-to-day financial skill. Leveraging data from the 2021 National Financial Capability Study, we find a significant and positive average treatment effect of financial literacy education on financial health. To test the robustness of this effect, we utilize a variety of causal estimators (Generalized Lin's estimator, 1:1 propensity matching, IPW, and AIPW) and conduct sensitivity analysis using alternate health outcome scoring and varying caliper strengths. Our results are robust to these changes. The robust positive effect of financial literacy education on financial health found here motivates financial education for all individuals and holds implications for policymakers seeking to address the worsening debt problem in the U.S, though the relatively small magnitude of effect demands further research by experts in the domain of financial health.

Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

Recent developments in image classification and natural language processing, coupled with the rapid growth in social media usage, have enabled fundamental advances in detecting breaking events around the world in real-time. Emergency response is one such area that stands to gain from these advances. By processing billions of texts and images a minute, events can be automatically detected to enable emergency response workers to better assess rapidly evolving situations and deploy resources accordingly. To date, most event detection techniques in this area have focused on image-only or text-only approaches, limiting detection performance and impacting the quality of information delivered to crisis response teams. In this paper, we present a new multimodal fusion method that leverages both images and texts as input. In particular, we introduce a cross-attention module that can filter uninformative and misleading components from weak modalities on a sample by sample basis. In addition, we employ a multimodal graph-based approach to stochastically transition between embeddings of different multimodal pairs during training to better regularize the learning process as well as dealing with limited training data by constructing new matched pairs from different samples. We show that our method outperforms the unimodal approaches and strong multimodal baselines by a large margin on three crisis-related tasks.

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

北京阿比特科技有限公司