We present a training method with linguistic speech regularization that improves the robustness of spontaneous speech synthesis methods with filled pause (FP) insertion. Spontaneous speech synthesis is aimed at producing speech with human-like disfluencies, such as FPs. Because modeling the complex data distribution of spontaneous speech with a rich FP vocabulary is challenging, the quality of FP-inserted synthetic speech is often limited. To address this issue, we present a method for synthesizing spontaneous speech that improves robustness to diverse FP insertions. Regularization is used to stabilize the synthesis of the linguistic speech (i.e., non-FP) elements. To further improve robustness to diverse FP insertions, it utilizes pseudo-FPs sampled using an FP word prediction model as well as ground-truth FPs. Our experiments demonstrated that the proposed method improves the naturalness of synthetic speech with ground-truth and predicted FPs by 0.24 and 0.26, respectively.
Quantum computing has recently emerged as a transformative technology. Yet, its promised advantages rely on efficiently translating quantum operations into viable physical realizations. In this work, we use generative machine learning models, specifically denoising diffusion models (DMs), to facilitate this transformation. Leveraging text-conditioning, we steer the model to produce desired quantum operations within gate-based quantum circuits. Notably, DMs allow to sidestep during training the exponential overhead inherent in the classical simulation of quantum dynamics -- a consistent bottleneck in preceding ML techniques. We demonstrate the model's capabilities across two tasks: entanglement generation and unitary compilation. The model excels at generating new circuits and supports typical DM extensions such as masking and editing to, for instance, align the circuit generation to the constraints of the targeted quantum device. Given their flexibility and generalization abilities, we envision DMs as pivotal in quantum circuit synthesis, enhancing both practical applications but also insights into theoretical quantum computation.
Previous audio-visual speech separation methods use the synchronization of the speaker's facial movement and speech in the video to supervise the speech separation in a self-supervised way. In this paper, we propose a model to solve the speech separation problem assisted by both face and sign language, which we call the extended speech separation problem. We design a general deep learning network for learning the combination of three modalities, audio, face, and sign language information, for better solving the speech separation problem. To train the model, we introduce a large-scale dataset named the Chinese Sign Language News Speech (CSLNSpeech) dataset, in which three modalities of audio, face, and sign language coexist. Experiment results show that the proposed model has better performance and robustness than the usual audio-visual system. Besides, sign language modality can also be used alone to supervise speech separation tasks, and the introduction of sign language is helpful for hearing-impaired people to learn and communicate. Last, our model is a general speech separation framework and can achieve very competitive separation performance on two open-source audio-visual datasets. The code is available at //github.com/iveveive/SLNSpeech
Uniform continuity bounds on entropies are generally expressed in terms of a single distance measure between a pair of probability distributions or quantum states, typically, the total variation distance or trace distance. However, if an additional distance measure between the probability distributions or states is known, then the continuity bounds can be significantly strengthened. Here, we prove a tight uniform continuity bound for the Shannon entropy in terms of both the local- and total variation distances, sharpening an inequality proven in [I. Sason, IEEE Trans. Inf. Th., 59, 7118 (2013)]. We also obtain a uniform continuity bound for the von Neumann entropy in terms of both the operator norm- and trace distances. The bound is tight when the quotient of the trace distance by the operator norm distance is an integer. We then apply our results to compute upper bounds on the quantum- and private classical capacities of channels. We begin by refining the concept of approximate degradable channels, namely, $\varepsilon$-degradable channels, which are, by definition, $\varepsilon$-close in diamond norm to their complementary channel when composed with a degrading channel. To this end, we introduce the notion of $(\varepsilon,\nu)$-degradable channels; these are $\varepsilon$-degradable channels that are, in addition, $\nu$-close in completely bounded spectral norm to their complementary channel, when composed with the same degrading channel. This allows us to derive improved upper bounds to the quantum- and private classical capacities of such channels. Moreover, these bounds can be further improved by considering certain unstabilized versions of the above norms. We show that upper bounds on the latter can be efficiently expressed as semidefinite programs. We illustrate our results by obtaining a new upper bound on the quantum capacity of the qubit depolarizing channel.
We propose a new method for the construction of layer-adapted meshes for singularly perturbed differential equations (SPDEs), based on mesh partial differential equations (MPDEs) that incorporate \emph{a posteriori} solution information. There are numerous studies on the development of parameter robust numerical methods for SPDEs that depend on the layer-adapted mesh of Bakhvalov. In~\citep{HiMa2021}, a novel MPDE-based approach for constructing a generalisation of these meshes was proposed. Like with most layer-adapted mesh methods, the algorithms in that article depended on detailed derivations of \emph{a priori} bounds on the SPDE's solution and its derivatives. In this work we extend that approach so that it instead uses \emph{a posteriori} computed estimates of the solution. We present detailed algorithms for the efficient implementation of the method, and numerical results for the robust solution of two-parameter reaction-convection-diffusion problems, in one and two dimensions. We also provide full FEniCS code for a one-dimensional example.
Pre-trained language models can be surprisingly adept at tasks they were not explicitly trained on, but how they implement these capabilities is poorly understood. In this paper, we investigate the basic mathematical abilities often acquired by pre-trained language models. Concretely, we use mechanistic interpretability techniques to explain the (limited) mathematical abilities of GPT-2 small. As a case study, we examine its ability to take in sentences such as "The war lasted from the year 1732 to the year 17", and predict valid two-digit end years (years > 32). We first identify a circuit, a small subset of GPT-2 small's computational graph that computes this task's output. Then, we explain the role of each circuit component, showing that GPT-2 small's final multi-layer perceptrons boost the probability of end years greater than the start year. Finally, we find related tasks that activate our circuit. Our results suggest that GPT-2 small computes greater-than using a complex but general mechanism that activates across diverse contexts.
Palimpsests refer to historical manuscripts where erased writings have been partially covered by the superimposition of a second writing. By employing imaging techniques, e.g., multispectral imaging, it becomes possible to identify features that are imperceptible to the naked eye, including faded and erased inks. When dealing with overlapping inks, Artificial Intelligence techniques can be utilized to disentangle complex nodes of overlapping letters. In this work, we propose deep learning-based semantic segmentation as a method for identifying and segmenting individual letters in overlapping characters. The experiment was conceived as a proof of concept, focusing on the palimpsests of the Ars Grammatica by Prisciano as a case study. Furthermore, caveats and prospects of our approach combined with multispectral imaging are also discussed.
Cloud computing and the evolution of management methodologies such as Lean Management or Agile entail a profound transformation in both system construction and maintenance approaches. These practices are encompassed within the term "DevOps." This descriptive approach to an information system or application, alongside the configuration of its constituent components, has necessitated the development of descriptive languages paired with specialized engines for automating systems administration tasks. Among these, the tandem of Ansible (engine) and YAML (descriptive language) stands out as the two most prevalent tools in the market, facing notable competition mainly from Terraform. The current document presents an inquiry into a solution for generating and managing Ansible YAML roles and playbooks, utilizing Generative LLMs (Language Models) to translate human descriptions into code. Our efforts are focused on identifying plausible directions and outlining the potential industrial applications. Note: For the purpose of this experiment, we have opted against the use of Ansible Lightspeed. This is due to its reliance on an IBM Watson model, for which we have not found any publicly available references. Comprehensive information regarding this remarkable technology can be found [1] directly on our partner's website, RedHat.
This paper presents the workspace optimization of one-translational two-rotational (1T2R) parallel manipulators using a dimensionally homogeneous constraint-embedded Jacobian. The mixed degrees of freedom of 1T2R parallel manipulators, which cause dimensional inconsistency, make it difficult to optimize their architectural parameters. To solve this problem, a point-based approach with a shifting property, selection matrix, and constraint-embedded inverse Jacobian is proposed. A simplified formulation is provided, eliminating the complex partial differentiation required in previous approaches. The dimensional homogeneity of the proposed method was analytically proven, and its validity was confirmed by comparing it with the conventional point-based method using a 3-PRS manipulator. Furthermore, the approach was applied to an asymmetric 2-RRS/RRRU manipulator with no parasitic motion. This mechanism has a T-shape combination of limbs with different kinematic parameters, making it challenging to derive a dimensionally homogeneous Jacobian using the conventional method. Finally, optimization was performed, and the results show that the proposed method is more efficient than the conventional approach. The efficiency and simplicity of the proposed method were verified using two distinct parallel manipulators.
Generalized linear models (GLMs) are routinely used for modeling relationships between a response variable and a set of covariates. The simple form of a GLM comes with easy interpretability, but also leads to concerns about model misspecification impacting inferential conclusions. A popular semi-parametric solution adopted in the frequentist literature is quasi-likelihood, which improves robustness by only requiring correct specification of the first two moments. We develop a robust approach to Bayesian inference in GLMs through quasi-posterior distributions. We show that quasi-posteriors provide a coherent generalized Bayes inference method, while also approximating so-called coarsened posteriors. In so doing, we obtain new insights into the choice of coarsening parameter. Asymptotically, the quasi-posterior converges in total variation to a normal distribution and has important connections with the loss-likelihood bootstrap posterior. We demonstrate that it is also well-calibrated in terms of frequentist coverage. Moreover, the loss-scale parameter has a clear interpretation as a dispersion, and this leads to a consolidated method of moments estimator.
Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.