亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multi-modal aspect-based sentiment analysis (MABSA) has recently attracted increasing attention. The span-based extraction methods, such as FSUIE, demonstrate strong performance in sentiment analysis due to their joint modeling of input sequences and target labels. However, previous methods still have certain limitations: (i) They ignore the difference in the focus of visual information between different analysis targets (aspect or sentiment). (ii) Combining features from uni-modal encoders directly may not be sufficient to eliminate the modal gap and can cause difficulties in capturing the image-text pairwise relevance. (iii) Existing span-based methods for MABSA ignore the pairwise relevance of target span boundaries. To tackle these limitations, we propose a novel framework called DQPSA for multi-modal sentiment analysis. Specifically, our model contains a Prompt as Dual Query (PDQ) module that uses the prompt as both a visual query and a language query to extract prompt-aware visual information and strengthen the pairwise relevance between visual information and the analysis target. Additionally, we introduce an Energy-based Pairwise Expert (EPE) module that models the boundaries pairing of the analysis target from the perspective of an Energy-based Model. This expert predicts aspect or sentiment span based on pairwise stability. Experiments on three widely used benchmarks demonstrate that DQPSA outperforms previous approaches and achieves a new state-of-the-art performance.

相關內容

Most existing neural-based text-to-speech methods rely on extensive datasets and face challenges under low-resource condition. In this paper, we introduce a novel semi-supervised text-to-speech synthesis model that learns from both paired and unpaired data to address this challenge. The key component of the proposed model is a dynamic quantized representation module, which is integrated into a sequential autoencoder. When given paired data, the module incorporates a trainable codebook that learns quantized representations under the supervision of the paired data. However, due to the limited paired data in low-resource scenario, these paired data are difficult to cover all phonemes. Then unpaired data is fed to expand the dynamic codebook by adding quantized representation vectors that are sufficiently distant from the existing ones during training. Experiments show that with less than 120 minutes of paired data, the proposed method outperforms existing methods in both subjective and objective metrics.

Table understanding capability of Large Language Models (LLMs) has been extensively studied through the task of question-answering (QA) over tables. Typically, only a small part of the whole table is relevant to derive the answer for a given question. The irrelevant parts act as noise and are distracting information, resulting in sub-optimal performance due to the vulnerability of LLMs to noise. To mitigate this, we propose CABINET (Content RelevAnce-Based NoIse ReductioN for TablE QuesTion-Answering) - a framework to enable LLMs to focus on relevant tabular data by suppressing extraneous information. CABINET comprises an Unsupervised Relevance Scorer (URS), trained differentially with the QA LLM, that weighs the table content based on its relevance to the input question before feeding it to the question-answering LLM (QA LLM). To further aid the relevance scorer, CABINET employs a weakly supervised module that generates a parsing statement describing the criteria of rows and columns relevant to the question and highlights the content of corresponding table cells. CABINET significantly outperforms various tabular LLM baselines, as well as GPT3-based in-context learning methods, is more robust to noise, maintains outperformance on tables of varying sizes, and establishes new SoTA performance on WikiTQ, FeTaQA, and WikiSQL datasets. We release our code and datasets at //github.com/Sohanpatnaik106/CABINET_QA.

Popular guidance for denoising diffusion probabilistic model (DDPM) linearly combines distinct conditional models together to provide enhanced control over samples. However, this approach overlooks nonlinear effects that become significant when guidance scale is large. To address this issue, we propose characteristic guidance, a guidance method that provides first-principle non-linear correction for classifier-free guidance. Such correction forces the guided DDPMs to respect the Fokker-Planck (FP) equation of diffusion process, in a way that is training-free and compatible with existing sampling methods. Experiments show that characteristic guidance enhances semantic characteristics of prompts and mitigate irregularities in image generation, proving effective in diverse applications ranging from simulating magnet phase transitions to latent space sampling.

Despite the predominance of contextualized embeddings in NLP, approaches to detect semantic change relying on these embeddings and clustering methods underperform simpler counterparts based on static word embeddings. This stems from the poor quality of the clustering methods to produce sense clusters -- which struggle to capture word senses, especially those with low frequency. This issue hinders the next step in examining how changes in word senses in one language influence another. To address this issue, we propose a graph-based clustering approach to capture nuanced changes in both high- and low-frequency word senses across time and languages, including the acquisition and loss of these senses over time. Our experimental results show that our approach substantially surpasses previous approaches in the SemEval2020 binary classification task across four languages. Moreover, we showcase the ability of our approach as a versatile visualization tool to detect semantic changes in both intra-language and inter-language setups. We make our code and data publicly available.

This work proposes a novel approach that uses a semantic segmentation mask to obtain a 2D spatial layout of the segmentation-categories across the scene, designated by segmentation-based semantic features (SSFs). These features represent, per segmentation-category, the pixel count, as well as the 2D average position and respective standard deviation values. Moreover, a two-branch network, GS2F2App, that exploits CNN-based global features extracted from RGB images and the segmentation-based features extracted from the proposed SSFs, is also proposed. GS2F2App was evaluated in two indoor scene benchmark datasets: the SUN RGB-D and the NYU Depth V2, achieving state-of-the-art results on both datasets.

Link prediction can help rectify inaccuracies in various graph algorithms, stemming from unaccounted-for or overlooked links within networks. However, many existing works use a baseline approach, which incurs unnecessary computational costs due to its high time complexity. Further, many studies focus on smaller graphs, which can lead to misleading conclusions. This technical report introduces two parallel approaches, called IHub and LHub, which predict links using neighborhood-based similarity measures on large graphs. LHub is a heuristic approach that additionally disregards large hubs, based on the idea that high-degree nodes contribute little similarity among their neighbors. On a server equipped with dual 16-core Intel Xeon Gold 6226R processors, LHub is on average 1019x faster than IHub, especially on web graphs and social networks, while maintaining similar prediction accuracy. Notably, LHub achieves a link prediction rate of 38.1M edges/s and improves performance at a rate of 1.6x for every doubling of threads.

The rapid growth of deep learning (DL) has spurred interest in enhancing log-based anomaly detection. This approach aims to extract meaning from log events (log message templates) and develop advanced DL models for anomaly detection. However, these DL methods face challenges like heavy reliance on training data, labels, and computational resources due to model complexity. In contrast, traditional machine learning and data mining techniques are less data-dependent and more efficient but less effective than DL. To make log-based anomaly detection more practical, the goal is to enhance traditional techniques to match DL's effectiveness. Previous research in a different domain (linking questions on Stack Overflow) suggests that optimized traditional techniques can rival state-of-the-art DL methods. Drawing inspiration from this concept, we conducted an empirical study. We optimized the unsupervised PCA (Principal Component Analysis), a traditional technique, by incorporating lightweight semantic-based log representation. This addresses the issue of unseen log events in training data, enhancing log representation. Our study compared seven log-based anomaly detection methods, including four DL-based, two traditional, and the optimized PCA technique, using public and industrial datasets. Results indicate that the optimized unsupervised PCA technique achieves similar effectiveness to advanced supervised/semi-supervised DL methods while being more stable with limited training data and resource-efficient. This demonstrates the adaptability and strength of traditional techniques through small yet impactful adaptations.

We consider (stochastic) subgradient methods for strongly convex but potentially nonsmooth non-Lipschitz optimization. We provide new equivalent dual descriptions (in the style of dual averaging) for the classic subgradient method, the proximal subgradient method, and the switching subgradient method. These equivalences enable $O(1/T)$ convergence guarantees in terms of both their classic primal gap and a not previously analyzed dual gap for strongly convex optimization. Consequently, our theory provides these classic methods with simple, optimal stopping criteria and optimality certificates at no added computational cost. Our results apply to a wide range of stepsize selections and of non-Lipschitz ill-conditioned problems where the early iterations of the subgradient method may diverge exponentially quickly (a phenomenon which, to the best of our knowledge, no prior works address). Even in the presence of such undesirable behaviors, our theory still ensures and bounds eventual convergence.

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司