亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We provide rigorous theoretical bounds for Anderson acceleration (AA) that allow for efficient approximate calculations of the residual, which reduce computational time and memory storage while maintaining convergence. Specifically, we propose a reduced variant of AA, which consists in projecting the least squares to compute the Anderson mixing onto a subspace of reduced dimension. The dimensionality of this subspace adapts dynamically at each iteration as prescribed by computable heuristic quantities guided by the theoretical error bounds. The use of the heuristic to monitor the error introduced by approximate calculations, combined with the check on monotonicity of the convergence, ensures the convergence of the numerical scheme within a prescribed tolerance threshold on the residual. We numerically assess the performance of AA with approximate calculations on: (i) linear deterministic fixed-point iterations arising from the Richardson's scheme to solve linear systems with open-source benchmark matrices with various preconditioners and (ii) non-linear deterministic fixed-point iterations arising from non-linear time-dependent Boltzmann equations.

相關內容

In dynamical systems, it is advantageous to identify regions of flow which can exhibit maximal influence on nearby behaviour. Hyperbolic Lagrangian Coherent Structures have been introduced to obtain two-dimensional surfaces which maximise repulsion or attraction in three-dimensional dynamical systems with arbitrary time-dependence. However, the numerical method to compute them requires obtaining derivatives associated with the system, often performed through the approximation of divided differences, which can lead to significant numerical error and numerical noise. In this paper, we introduce a novel method for the numerical calculation of hyperbolic Lagrangian Coherent Structures using Differential Algebra called DA-LCS. As a form of automatic forward differentiation, it allows direct computation of the Taylor expansion of the flow, its derivatives, and the eigenvectors of the associated strain tensor, with all derivatives obtained algebraically and to machine precision. It does so without a priori information about the system, such as variational equations or explicit derivatives. We demonstrate that this can provide significant improvements in the accuracy of the Lagrangian Coherent Structures identified compared to finite-differencing methods in a series of test cases drawn from the literature. We also show how DA-LCS uncovers additional dynamical behaviour in a real-world example drawn from astrodynamics.

In this paper, we study a sequential decision making problem faced by e-commerce carriers related to when to send out a vehicle from the central depot to serve customer requests, and in which order to provide the service, under the assumption that the time at which parcels arrive at the depot is stochastic and dynamic. The objective is to maximize the number of parcels that can be delivered during the service hours. We propose two reinforcement learning approaches for solving this problem, one based on a policy function approximation (PFA) and the second on a value function approximation (VFA). Both methods are combined with a look-ahead strategy, in which future release dates are sampled in a Monte-Carlo fashion and a tailored batch approach is used to approximate the value of future states. Our PFA and VFA make a good use of branch-and-cut-based exact methods to improve the quality of decisions. We also establish sufficient conditions for partial characterization of optimal policy and integrate them into PFA/VFA. In an empirical study based on 720 benchmark instances, we conduct a competitive analysis using upper bounds with perfect information and we show that PFA and VFA greatly outperform two alternative myopic approaches. Overall, PFA provides best solutions, while VFA (which benefits from a two-stage stochastic optimization model) achieves a better tradeoff between solution quality and computing time.

Multiple Tensor-Times-Matrix (Multi-TTM) is a key computation in algorithms for computing and operating with the Tucker tensor decomposition, which is frequently used in multidimensional data analysis. We establish communication lower bounds that determine how much data movement is required to perform the Multi-TTM computation in parallel. The crux of the proof relies on analytically solving a constrained, nonlinear optimization problem. We also present a parallel algorithm to perform this computation that organizes the processors into a logical grid with twice as many modes as the input tensor. We show that with correct choices of grid dimensions, the communication cost of the algorithm attains the lower bounds and is therefore communication optimal. Finally, we show that our algorithm can significantly reduce communication compared to the straightforward approach of expressing the computation as a sequence of tensor-times-matrix operations.

Recently, Implicit Neural Representations (INRs) parameterized by neural networks have emerged as a powerful and promising tool to represent different kinds of signals due to its continuous, differentiable properties, showing superiorities to classical discretized representations. However, the training of neural networks for INRs only utilizes input-output pairs, and the derivatives of the target output with respect to the input, which can be accessed in some cases, are usually ignored. In this paper, we propose a training paradigm for INRs whose target output is image pixels, to encode image derivatives in addition to image values in the neural network. Specifically, we use finite differences to approximate image derivatives. We show how the training paradigm can be leveraged to solve typical INRs problems, i.e., image regression and inverse rendering, and demonstrate this training paradigm can improve the data-efficiency and generalization capabilities of INRs. The code of our method is available at \url{//github.com/megvii-research/Sobolev_INRs}.

The flow-driven spectral chaos (FSC) is a recently developed method for tracking and quantifying uncertainties in the long-time response of stochastic dynamical systems using the spectral approach. The method uses a novel concept called 'enriched stochastic flow maps' as a means to construct an evolving finite-dimensional random function space that is both accurate and computationally efficient in time. In this paper, we present a multi-element version of the FSC method (the ME-FSC method for short) to tackle (mainly) those dynamical systems that are inherently discontinuous over the probability space. In ME-FSC, the random domain is partitioned into several elements, and then the problem is solved separately on each random element using the FSC method. Subsequently, results are aggregated to compute the probability moments of interest using the law of total probability. To demonstrate the effectiveness of the ME-FSC method in dealing with discontinuities and long-time integration of stochastic dynamical systems, four representative numerical examples are presented in this paper, including the Van-der-Pol oscillator problem and the Kraichnan-Orszag three-mode problem. Results show that the ME-FSC method is capable of solving problems that have strong nonlinear dependencies over the probability space, both reliably and at low computational cost.

It was observed in \citet{gupta2009differentially} that the Set Cover problem has strong impossibility results under differential privacy. In our work, we observe that these hardness results dissolve when we turn to the Partial Set Cover problem, where we only need to cover a $\rho$-fraction of the elements in the universe, for some $\rho\in(0,1)$. We show that this relaxation enables us to avoid the impossibility results: under loose conditions on the input set system, we give differentially private algorithms which output an explicit set cover with non-trivial approximation guarantees. In particular, this is the first differentially private algorithm which outputs an explicit set cover. Using our algorithm for Partial Set Cover as a subroutine, we give a differentially private (bicriteria) approximation algorithm for a facility location problem which generalizes $k$-center/$k$-supplier with outliers. Like with the Set Cover problem, no algorithm has been able to give non-trivial guarantees for $k$-center/$k$-supplier-type facility location problems due to the high sensitivity and impossibility results. Our algorithm shows that relaxing the covering requirement to serving only a $\rho$-fraction of the population, for $\rho\in(0,1)$, enables us to circumvent the inherent hardness. Overall, our work is an important step in tackling and understanding impossibility results in private combinatorial optimization.

This paper considers the problem of unsupervised 3D object reconstruction from in-the-wild single-view images. Due to ambiguity and intrinsic ill-posedness, this problem is inherently difficult to solve and therefore requires strong regularization to achieve disentanglement of different latent factors. Unlike existing works that introduce explicit regularizations into objective functions, we look into a different space for implicit regularization -- the structure of latent space. Specifically, we restrict the structure of latent space to capture a topological causal ordering of latent factors (i.e., representing causal dependency as a directed acyclic graph). We first show that different causal orderings matter for 3D reconstruction, and then explore several approaches to find a task-dependent causal factor ordering. Our experiments demonstrate that the latent space structure indeed serves as an implicit regularization and introduces an inductive bias beneficial for reconstruction.

Time-lapse electrical resistivity tomography (ERT) is a popular geophysical method to estimate three-dimensional (3D) permeability fields from electrical potential difference measurements. Traditional inversion and data assimilation methods are used to ingest this ERT data into hydrogeophysical models to estimate permeability. Due to ill-posedness and the curse of dimensionality, existing inversion strategies provide poor estimates and low resolution of the 3D permeability field. Recent advances in deep learning provide us with powerful algorithms to overcome this challenge. This paper presents a deep learning (DL) framework to estimate the 3D subsurface permeability from time-lapse ERT data. To test the feasibility of the proposed framework, we train DL-enabled inverse models on simulation data. Subsurface process models based on hydrogeophysics are used to generate this synthetic data for deep learning analyses. Results show that proposed weak supervised learning can capture salient spatial features in the 3D permeability field. Quantitatively, the average mean squared error (in terms of the natural log) on the strongly labeled training, validation, and test datasets is less than 0.5. The R2-score (global metric) is greater than 0.75, and the percent error in each cell (local metric) is less than 10%. Finally, an added benefit in terms of computational cost is that the proposed DL-based inverse model is at least O(104) times faster than running a forward model. Note that traditional inversion may require multiple forward model simulations (e.g., in the order of 10 to 1000), which are very expensive. This computational savings (O(105) - O(107)) makes the proposed DL-based inverse model attractive for subsurface imaging and real-time ERT monitoring applications due to fast and yet reasonably accurate estimations of the permeability field.

In Federated Learning (FL), a number of clients or devices collaborate to train a model without sharing their data. Models are optimized locally at each client and further communicated to a central hub for aggregation. While FL is an appealing decentralized training paradigm, heterogeneity among data from different clients can cause the local optimization to drift away from the global objective. In order to estimate and therefore remove this drift, variance reduction techniques have been incorporated into FL optimization recently. However, these approaches inaccurately estimate the clients' drift and ultimately fail to remove it properly. In this work, we propose an adaptive algorithm that accurately estimates drift across clients. In comparison to previous works, our approach necessitates less storage and communication bandwidth, as well as lower compute costs. Additionally, our proposed methodology induces stability by constraining the norm of estimates for client drift, making it more practical for large scale FL. Experimental findings demonstrate that the proposed algorithm converges significantly faster and achieves higher accuracy than the baselines across various FL benchmarks.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

北京阿比特科技有限公司