亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sequential Monte Carlo methods are typically not straightforward to implement on parallel architectures. This is because standard resampling schemes involve communication between all particles. The $\alpha$-sequential Monte Carlo method was proposed recently as a potential solution to this which limits communication between particles. This limited communication is controlled through a sequence of stochastic matrices known as $\alpha$-matrices. We study the influence of the communication structure on the convergence and stability properties of the resulting algorithms. In particular, we quantitatively show that the mixing properties of the $\alpha$-matrices play an important role in the stability properties of the algorithm. Moreover, we prove that one can ensure good mixing properties by using randomized communication structures where each particle only communicates with a few neighboring particles. The resulting algorithms converge at the usual Monte Carlo rate. This leads to efficient versions of distributed sequential Monte Carlo.

相關內容

Iterative hard thresholding (IHT) has gained in popularity over the past decades in large-scale optimization. However, convergence properties of this method have only been explored recently in non-convex settings. In matrix completion, existing works often focus on the guarantee of global convergence of IHT via standard assumptions such as incoherence property and uniform sampling. While such analysis provides a global upper bound on the linear convergence rate, it does not describe the actual performance of IHT in practice. In this paper, we provide a novel insight into the local convergence of a specific variant of IHT for matrix completion. We uncover the exact linear rate of IHT in a closed-form expression and identify the region of convergence in which the algorithm is guaranteed to converge. Furthermore, we utilize random matrix theory to study the linear rate of convergence of IHTSVD for large-scale matrix completion. We find that asymptotically, the rate can be expressed in closed form in terms of the relative rank and the sampling rate. Finally, we present various numerical results to verify the aforementioned theoretical analysis.

Many interesting applications of hyperbolic systems of equations are stiff, and require the time step to satisfy restrictive stability conditions. One way to avoid small time steps is to use implicit time integration. Implicit integration is quite straightforward for first order schemes. High order schemes instead need also to control spurious oscillations, which requires limiting in space and time also in the implicit case. We propose a framework to simplify considerably the application of high order non oscillatory schemes through the introduction of a low order implicit predictor, which is used both to set up the nonlinear weights of a standard high order space reconstruction, and to achieve limiting in time. In this preliminary work, we concentrate on the case of a third order scheme, based on DIRK integration in time and CWENO reconstruction in space. The numerical tests involve linear and nonlinear scalar conservation laws.

The Ensemble Kalman Filter (EnKF) belongs to the class of iterative particle filtering methods and can be used for solving control--to--observable inverse problems. In this context, the EnKF is known as Ensemble Kalman Inversion (EKI). In recent years several continuous limits in the number of iteration and particles have been performed in order to study properties of the method. In particular, a one--dimensional linear stability analysis reveals possible drawbacks in the phase space of moments provided by the continuous limits of the EKI, but observed also in the multi--dimensional setting. In this work we address this issue by introducing a stabilization of the dynamics which leads to a method with globally asymptotically stable solutions. We illustrate the performance of the stabilized version by using test inverse problems from the literature and comparing it with the classical continuous limit formulation of the method.

The mutual information (MI) of Gaussian multi-input multi-output (MIMO) channels has been evaluated by utilizing random matrix theory (RMT) and shown to asymptotically follow Gaussian distribution, where the ergodic mutual information (EMI) converges to a deterministic quantity. However, with non-Gaussian channels, there is a bias between the EMI and its deterministic equivalent (DE), whose evaluation is not available in the literature. This bias of the EMI is related to the bias for the trace of the resolvent in large RMT. In this paper, we first derive the bias for the trace of the resolvent, which is further extended to compute the bias for the linear spectral statistics (LSS). Then, we apply the above results on non-Gaussian MIMO channels to determine the bias for the EMI. It is also proved that the bias for the EMI is $-0.5$ times of that for the variance of the MI. Finally, the derived bias is utilized to modify the central limit theory (CLT) and calculate the outage probability. Numerical results show that the modified CLT significantly outperforms previous methods in approximating the distribution of the MI and improves the accuracy for the outage probability evaluation.

Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.

This analysis explores the temporal sequencing of objects in a movie trailer. Temporal sequencing of objects in a movie trailer (e.g., a long shot of an object vs intermittent short shots) can convey information about the type of movie, plot of the movie, role of the main characters, and the filmmakers cinematographic choices. When combined with historical customer data, sequencing analysis can be used to improve predictions of customer behavior. E.g., a customer buys tickets to a new movie and maybe the customer has seen movies in the past that contained similar sequences. To explore object sequencing in movie trailers, we propose a video convolutional network to capture actions and scenes that are predictive of customers' preferences. The model learns the specific nature of sequences for different types of objects (e.g., cars vs faces), and the role of sequences in predicting customer future behavior. We show how such a temporal-aware model outperforms simple feature pooling methods proposed in our previous works and, importantly, demonstrate the additional model explain-ability allowed by such a model.

We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.

Singular value decomposition (SVD) is the mathematical basis of principal component analysis (PCA). Together, SVD and PCA are one of the most widely used mathematical formalism/decomposition in machine learning, data mining, pattern recognition, artificial intelligence, computer vision, signal processing, etc. In recent applications, regularization becomes an increasing trend. In this paper, we present a regularized SVD (RSVD), present an efficient computational algorithm, and provide several theoretical analysis. We show that although RSVD is non-convex, it has a closed-form global optimal solution. Finally, we apply RSVD to the application of recommender system and experimental result show that RSVD outperforms SVD significantly.

Many resource allocation problems in the cloud can be described as a basic Virtual Network Embedding Problem (VNEP): finding mappings of request graphs (describing the workloads) onto a substrate graph (describing the physical infrastructure). In the offline setting, the two natural objectives are profit maximization, i.e., embedding a maximal number of request graphs subject to the resource constraints, and cost minimization, i.e., embedding all requests at minimal overall cost. The VNEP can be seen as a generalization of classic routing and call admission problems, in which requests are arbitrary graphs whose communication endpoints are not fixed. Due to its applications, the problem has been studied intensively in the networking community. However, the underlying algorithmic problem is hardly understood. This paper presents the first fixed-parameter tractable approximation algorithms for the VNEP. Our algorithms are based on randomized rounding. Due to the flexible mapping options and the arbitrary request graph topologies, we show that a novel linear program formulation is required. Only using this novel formulation the computation of convex combinations of valid mappings is enabled, as the formulation needs to account for the structure of the request graphs. Accordingly, to capture the structure of request graphs, we introduce the graph-theoretic notion of extraction orders and extraction width and show that our algorithms have exponential runtime in the request graphs' maximal width. Hence, for request graphs of fixed extraction width, we obtain the first polynomial-time approximations. Studying the new notion of extraction orders we show that (i) computing extraction orders of minimal width is NP-hard and (ii) that computing decomposable LP solutions is in general NP-hard, even when restricting request graphs to planar ones.

We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.

北京阿比特科技有限公司