亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces our Cyber-Physical Mobility Lab (CPM Lab). It is an open-source development environment for networked and autonomous vehicles with focus on networked decision-making, trajectory planning, and control. The CPM Lab hosts 20 physical model-scale vehicles ({\mu}Cars) which we can seamlessly extend by unlimited simulated vehicles. The code and construction plans are publicly available to enable rebuilding the CPM Lab. Our four-layered architecture enables the seamless use of the same software in simulations and in experiments without any further adaptions. A Data Distribution Service (DDS) based middleware allows adapting the number of vehicles during experiments in a seamless manner. The middleware is also responsible for synchronizing all entities following a logical execution time approach to achieve determinism and reproducibility of experiments. This approach makes the CPM Lab a unique platform for rapid functional prototyping of networked decision-making algorithms. The CPM Lab allows researchers as well as students from different disciplines to see their ideas developing into reality. We demonstrate its capabilities using two example experiments. We are working on a remote access to the CPM Lab via a webinterface.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網(wang)絡會議。 Publisher:IFIP。 SIT:

In this paper, we present our software sensor fusion framework for self-driving cars and other autonomous robots. We have designed our framework as a universal and scalable platform for building up a robust 3D model of the agent's surrounding environment by fusing a wide range of various sensors into the data model that we can use as a basement for the decision making and planning algorithms. Our software currently covers the data fusion of the RGB and thermal cameras, 3D LiDARs, 3D IMU, and a GNSS positioning. The framework covers a complete pipeline from data loading, filtering, preprocessing, environment model construction, visualization, and data storage. The architecture allows the community to modify the existing setup or to extend our solution with new ideas. The entire software is fully compatible with ROS (Robotic Operation System), which allows the framework to cooperate with other ROS-based software. The source codes are fully available as an open-source under the MIT license. See //github.com/Robotics-BUT/Atlas-Fusion.

The approximate uniform sampling of graph realizations with a given degree sequence is an everyday task in several social science, computer science, engineering etc. projects. One approach is using Markov chains. The best available current result about the well-studied switch Markov chain is that it is rapidly mixing on P-stable degree sequences (see DOI:10.1016/j.ejc.2021.103421). The switch Markov chain does not change any degree sequence. However, there are cases where degree intervals are specified rather than a single degree sequence. (A natural scenario where this problem arises is in hypothesis testing on social networks that are only partially observed.) Rechner, Strowick, and M\"uller-Hannemann introduced in 2018 the notion of degree interval Markov chain which uses three (separately well-studied) local operations (switch, hinge-flip and toggle), and employing on degree sequence realizations where any two sequences under scrutiny have very small coordinate-wise distance. Recently Amanatidis and Kleer published a beautiful paper (arXiv:2110.09068), showing that the degree interval Markov chain is rapidly mixing if the sequences are coming from a system of very thin intervals which are centered not far from a regular degree sequence. In this paper we extend substantially their result, showing that the degree interval Markov chain is rapidly mixing if the intervals are centred at P-stable degree sequences.

The advancements in peer-to-peer wireless power transfer (P2P-WPT) have empowered the portable and mobile devices to wirelessly replenish their battery by directly interacting with other nearby devices. The existing works unrealistically assume the users to exchange energy with any of the users and at every such opportunity. However, due to the users' mobility, the inter-node meetings in such opportunistic mobile networks vary, and P2P energy exchange in such scenarios remains uncertain. Additionally, the social interests and interactions of the users influence their mobility as well as the energy exchange between them. The existing P2P-WPT methods did not consider the joint problem for energy exchange due to user's inevitable mobility, and the influence of sociality on the latter. As a result of computing with imprecise information, the energy balance achieved by these works at a slower rate as well as impaired by energy loss for the crowd. Motivated by this problem scenario, in this work, we present a wireless crowd charging method, namely MoSaBa, which leverages mobility prediction and social information for improved energy balancing. MoSaBa incorporates two dimensions of social information, namely social context and social relationships, as additional features for predicting contact opportunities. In this method, we explore the different pairs of peers such that the energy balancing is achieved at a faster rate as well as the energy balance quality improves in terms of maintaining low energy loss for the crowd. We justify the peer selection method in MoSaBa by detailed performance evaluation. Compared to the existing state-of-the-art, the proposed method achieves better performance trade-offs between energy-efficiency, energy balance quality and convergence time.

Autonomous driving is an active research topic in both academia and industry. However, most of the existing solutions focus on improving the accuracy by training learnable models with centralized large-scale data. Therefore, these methods do not take into account the user's privacy. In this paper, we present a new approach to learn autonomous driving policy while respecting privacy concerns. We propose a peer-to-peer Deep Federated Learning (DFL) approach to train deep architectures in a fully decentralized manner and remove the need for central orchestration. We design a new Federated Autonomous Driving network (FADNet) that can improve the model stability, ensure convergence, and handle imbalanced data distribution problems while is being trained with federated learning methods. Intensively experimental results on three datasets show that our approach with FADNet and DFL achieves superior accuracy compared with other recent methods. Furthermore, our approach can maintain privacy by not collecting user data to a central server.

Cyber-physical systems (CPS) have been broadly deployed in safety-critical domains, such as automotive systems, avionics, medical devices, etc. In recent years, Artificial Intelligence (AI) has been increasingly adopted to control CPS. Despite the popularity of AI-enabled CPS, few benchmarks are publicly available. There is also a lack of deep understanding on the performance and reliability of AI-enabled CPS across different industrial domains. To bridge this gap, we initiate to create a public benchmark of industry-level CPS in seven domains and build AI controllers for them via state-of-the-art deep reinforcement learning (DRL) methods. Based on that, we further perform a systematic evaluation of these AI-enabled systems with their traditional counterparts to identify the current challenges and explore future opportunities. Our key findings include (1) AI controllers do not always outperform traditional controllers, (2) existing CPS testing techniques (falsification, specifically) fall short of analyzing AI-enabled CPS, and (3) building a hybrid system that strategically combines and switches between AI controllers and traditional controllers can achieve better performance across different domains. Our results highlight the need for new testing techniques for AI-enabled CPS and the need for more investigations into hybrid CPS systems to achieve optimal performance and reliability.

The past few years have witnessed an increasing interest in improving the perception performance of LiDARs on autonomous vehicles. While most of the existing works focus on developing new deep learning algorithms or model architectures, we study the problem from the physical design perspective, i.e., how different placements of multiple LiDARs influence the learning-based perception. To this end, we introduce an easy-to-compute information-theoretic surrogate metric to quantitatively and fast evaluate LiDAR placement for 3D detection of different types of objects. We also present a new data collection, detection model training and evaluation framework in the realistic CARLA simulator to evaluate disparate multi-LiDAR configurations. Using several prevalent placements inspired by the designs of self-driving companies, we show the correlation between our surrogate metric and object detection performance of different representative algorithms on KITTI through extensive experiments, validating the effectiveness of our LiDAR placement evaluation approach. Our results show that sensor placement is non-negligible in 3D point cloud-based object detection, which will contribute up to 10% performance discrepancy in terms of average precision in challenging 3D object detection settings. We believe that this is one of the first studies to quantitatively investigate the influence of LiDAR placement on perception performance.

This article presents an in-depth review of the topic of path following for autonomous robotic vehicles, with a specific focus on vehicle motion in two dimensional space (2D). From a control system standpoint, path following can be formulated as the problem of stabilizing a path following error system that describes the dynamics of position and possibly orientation errors of a vehicle with respect to a path, with the errors defined in an appropriate reference frame. In spite of the large variety of path following methods described in the literature we show that, in principle, most of them can be categorized in two groups: stabilization of the path following error system expressed either in the vehicle's body frame or in a frame attached to a "reference point" moving along the path, such as a Frenet-Serret (F-S) frame or a Parallel Transport (P-T) frame. With this observation, we provide a unified formulation that is simple but general enough to cover many methods available in the literature. We then discuss the advantages and disadvantages of each method, comparing them from the design and implementation standpoint. We further show experimental results of the path following methods obtained from field trials testing with under-actuated and fully-actuated autonomous marine vehicles. In addition, we introduce open-source Matlab and Gazebo/ROS simulation toolboxes that are helpful in testing path following methods prior to their integration in the combined guidance, navigation, and control systems of autonomous vehicles.

Synthesis of ergodic, stationary visual patterns is widely applicable in texturing, shape modeling, and digital content creation. The wide applicability of this technique thus requires the pattern synthesis approaches to be scalable, diverse, and authentic. In this paper, we propose an exemplar-based visual pattern synthesis framework that aims to model the inner statistics of visual patterns and generate new, versatile patterns that meet the aforementioned requirements. To this end, we propose an implicit network based on generative adversarial network (GAN) and periodic encoding, thus calling our network the Implicit Periodic Field Network (IPFN). The design of IPFN ensures scalability: the implicit formulation directly maps the input coordinates to features, which enables synthesis of arbitrary size and is computationally efficient for 3D shape synthesis. Learning with a periodic encoding scheme encourages diversity: the network is constrained to model the inner statistics of the exemplar based on spatial latent codes in a periodic field. Coupled with continuously designed GAN training procedures, IPFN is shown to synthesize tileable patterns with smooth transitions and local variations. Last but not least, thanks to both the adversarial training technique and the encoded Fourier features, IPFN learns high-frequency functions that produce authentic, high-quality results. To validate our approach, we present novel experimental results on various applications in 2D texture synthesis and 3D shape synthesis.

There has been growing interest in the development and deployment of autonomous vehicles on roads over the last few years, encouraged by the empirical successes of powerful artificial intelligence techniques (AI), especially in the applications of deep learning and reinforcement learning. However, as demonstrated by recent traffic accidents, autonomous driving technology is not mature for safe deployment. As AI is the main technology behind the intelligent navigation systems of self-driving vehicles, both the stakeholders and transportation jurisdictions require their AI-driven software architecture to be safe, explainable, and regulatory compliant. We propose a framework that integrates autonomous control, explainable AI, and regulatory compliance to address this issue and validate the framework with a critical analysis in a case study. Moreover, we describe relevant XAI approaches that can help achieve the goals of the framework.

Autonomous driving has achieved a significant milestone in research and development over the last decade. There is increasing interest in the field as the deployment of self-operating vehicles on roads promises safer and more ecologically friendly transportation systems. With the rise of computationally powerful artificial intelligence (AI) techniques, autonomous vehicles can sense their environment with high precision, make safe real-time decisions, and operate more reliably without human interventions. However, intelligent decision-making in autonomous cars is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, the AI systems of autonomous vehicles also need to explain how these decisions are constructed in order to be regulatory compliant across many jurisdictions. Our study sheds a comprehensive light on developing explainable artificial intelligence (XAI) approaches for autonomous vehicles. In particular, we make the following contributions. First, we provide a thorough overview of the present gaps with respect to explanations in the state-of-the-art autonomous vehicle industry. We then show the taxonomy of explanations and explanation receivers in this field. Thirdly, we propose a framework for an architecture of end-to-end autonomous driving systems and justify the role of XAI in both debugging and regulating such systems. Finally, as future research directions, we provide a field guide on XAI approaches for autonomous driving that can improve operational safety and transparency towards achieving public approval by regulators, manufacturers, and all engaged stakeholders.

北京阿比特科技有限公司