In this paper, we consider enumeration of geodesics on a polyhedron, where a geodesic means locally-shortest path between two points. Particularly, we consider the following preprocessing problem: given a point $s$ on a polyhedral surface and a positive real number $r$, to build a data structure that enables, for any point $t$ on the surface, to enumerate all geodesics from $s$ to $t$ whose length is less than $r$. First, we present a naive algorithm by removing the trimming process from the MMP algorithm (1987). Next, we present an improved algorithm which is practically more efficient on a non-convex polyhedron, in terms of preprocessing time and memory consumption. Moreover, we introduce a single-pair geodesic graph to succinctly encode a result of geodesic query. Lastly, we compare these naive and improved algorithms by some computer experiments.
This work studies post-training parameter quantization in large language models (LLMs). We introduce quantization with incoherence processing (QuIP), a new method based on the insight that quantization benefits from incoherent weight and Hessian matrices, i.e., from the weights and the directions in which it is important to round them accurately being unaligned with the coordinate axes. QuIP consists of two steps: (1) an adaptive rounding procedure minimizing a quadratic proxy objective; (2) efficient pre- and post-processing that ensures weight and Hessian incoherence via multiplication by random orthogonal matrices. We complement QuIP with the first theoretical analysis for an LLM-scale quantization algorithm, and show that our theory also applies to an existing method, OPTQ. Empirically, we find that our incoherence preprocessing improves several existing quantization algorithms and yields the first LLM quantization methods that produce viable results using only two bits per weight. Our code can be found at //github.com/jerry-chee/QuIP .
Social media offer plenty of information to perform market research in order to meet the requirements of customers. One way how this research is conducted is that a domain expert gathers and categorizes user-generated content into a complex and fine-grained class structure. In many of such cases, little data meets complex annotations. It is not yet fully understood how this can be leveraged successfully for classification. We examine the classification accuracy of expert labels when used with a) many fine-grained classes and b) few abstract classes. For scenario b) we compare abstract class labels given by the domain expert as baseline and by automatic hierarchical clustering. We compare this to another baseline where the entire class structure is given by a completely unsupervised clustering approach. By doing so, this work can serve as an example of how complex expert annotations are potentially beneficial and can be utilized in the most optimal way for opinion mining in highly specific domains. By exploring across a range of techniques and experiments, we find that automated class abstraction approaches in particular the unsupervised approach performs remarkably well against domain expert baseline on text classification tasks. This has the potential to inspire opinion mining applications in order to support market researchers in practice and to inspire fine-grained automated content analysis on a large scale.
We study the binary and continuous negative-margin perceptrons as simple non-convex neural network models learning random rules and associations. We analyze the geometry of the landscape of solutions in both models and find important similarities and differences. Both models exhibit subdominant minimizers which are extremely flat and wide. These minimizers coexist with a background of dominant solutions which are composed by an exponential number of algorithmically inaccessible small clusters for the binary case (the frozen 1-RSB phase) or a hierarchical structure of clusters of different sizes for the spherical case (the full RSB phase). In both cases, when a certain threshold in constraint density is crossed, the local entropy of the wide flat minima becomes non-monotonic, indicating a break-up of the space of robust solutions into disconnected components. This has a strong impact on the behavior of algorithms in binary models, which cannot access the remaining isolated clusters. For the spherical case the behaviour is different, since even beyond the disappearance of the wide flat minima the remaining solutions are shown to always be surrounded by a large number of other solutions at any distance, up to capacity. Indeed, we exhibit numerical evidence that algorithms seem to find solutions up to the SAT/UNSAT transition, that we compute here using an 1RSB approximation. For both models, the generalization performance as a learning device is shown to be greatly improved by the existence of wide flat minimizers even when trained in the highly underconstrained regime of very negative margins.
Gradient-based methods for value estimation in reinforcement learning have favorable stability properties, but they are typically much slower than Temporal Difference (TD) learning methods. We study the root causes of this slowness and show that Mean Square Bellman Error (MSBE) is an ill-conditioned loss function in the sense that its Hessian has large condition-number. To resolve the adverse effect of poor conditioning of MSBE on gradient based methods, we propose a low complexity batch-free proximal method that approximately follows the Gauss-Newton direction and is asymptotically robust to parameterization. Our main algorithm, called RANS, is efficient in the sense that it is significantly faster than the residual gradient methods while having almost the same computational complexity, and is competitive with TD on the classic problems that we tested.
This paper considers the Cauchy problem for the nonlinear dynamic string equation of Kirchhoff-type with time-varying coefficients. The objective of this work is to develop a temporal discretization algorithm capable of approximating a solution to this initial-boundary value problem. To this end, a symmetric three-layer semi-discrete scheme is employed with respect to the temporal variable, wherein the value of a nonlinear term is evaluated at the middle node point. This approach enables the numerical solutions per temporal step to be obtained by inverting the linear operators, yielding a system of second-order linear ordinary differential equations. Local convergence of the proposed scheme is established, and it achieves quadratic convergence concerning the step size of the discretization of time on the local temporal interval. We have conducted several numerical experiments using the proposed algorithm for various test problems to validate its performance. It can be said that the obtained numerical results are in accordance with the theoretical findings.
A new algorithm for regret minimization in online convex optimization is described. The regret of the algorithm after $T$ time periods is $O(\sqrt{T \log T})$ - which is the minimum possible up to a logarithmic term. In addition, the new algorithm is adaptive, in the sense that the regret bounds hold not only for the time periods $1,\ldots,T$ but also for every sub-interval $s,s+1,\ldots,t$. The running time of the algorithm matches that of newly introduced interior point algorithms for regret minimization: in $n$-dimensional space, during each iteration the new algorithm essentially solves a system of linear equations of order $n$, rather than solving some constrained convex optimization problem in $n$ dimensions and possibly many constraints.
The empirical validation of models remains one of the most important challenges in opinion dynamics. In this contribution, we report on recent developments on combining data from survey experiments with computational models of opinion formation. We extend previous work on the empirical assessment of an argument-based model for opinion dynamics in which biased processing is the principle mechanism. While previous work (Banisch & Shamon, in press) has focused on calibrating the micro mechanism with experimental data on argument-induced opinion change, this paper concentrates on the macro level using the empirical data gathered in the survey experiment. For this purpose, the argument model is extended by an external source of balanced information which allows to control for the impact of peer influence processes relative to other noisy processes. We show that surveyed opinion distributions are matched with a high level of accuracy in a specific region in the parameter space, indicating an equal impact of social influence and external noise. More importantly, the estimated strength of biased processing given the macro data is compatible with those values that achieve high likelihood at the micro level. The main contribution of the paper is hence to show that the extended argument-based model provides a solid bridge from the micro processes of argument-induced attitude change to macro level opinion distributions. Beyond that, we review the development of argument-based models and present a new method for the automated classification of model outcomes.
Modern mainstream financial theory is underpinned by the efficient market hypothesis, which posits the rapid incorporation of relevant information into asset pricing. Limited prior studies in the operational research literature have investigated tests designed for random number generators to check for these informational efficiencies. Treating binary daily returns as a hardware random number generator analogue, tests of overlapping permutations have indicated that these time series feature idiosyncratic recurrent patterns. Contrary to prior studies, we split our analysis into two streams at the annual and company level, and investigate longer-term efficiency over a larger time frame for Nasdaq-listed public companies to diminish the effects of trading noise and allow the market to realistically digest new information. Our results demonstrate that information efficiency varies across years and reflects large-scale market impacts such as financial crises. We also show the proximity to results of a well-tested pseudo-random number generator, discuss the distinction between theoretical and practical market efficiency, and find that the statistical qualification of stock-separated returns in support of the efficient market hypothesis is dependent on the driving factor of small inefficient subsets that skew market assessments.
It has been observed by several authors that well-known periodization strategies like tent or Chebychev transforms lead to remarkable results for the recovery of multivariate functions from few samples. So far, theoretical guarantees are missing. The goal of this paper is twofold. On the one hand, we give such guarantees and briefly describe the difficulties of the involved proof. On the other hand, we combine these periodization strategies with recent novel constructive methods for the efficient subsampling of finite frames in $\mathbb{C}$. As a result we are able to reconstruct non-periodic multivariate functions from very few samples. The used sampling nodes are the result of a two-step procedure. Firstly, a random draw with respect to the Chebychev measure provides an initial node set. A further sparsification technique selects a significantly smaller subset of these nodes with equal approximation properties. This set of sampling nodes scales linearly in the dimension of the subspace on which we project and works universally for the whole class of functions. The method is based on principles developed by Batson, Spielman, and Srivastava and can be numerically implemented. Samples on these nodes are then used in a (plain) least-squares sampling recovery step on a suitable hyperbolic cross subspace of functions resulting in a near-optimal behavior of the sampling error. Numerical experiments indicate the applicability of our results.
Adam is a commonly used stochastic optimization algorithm in machine learning. However, its convergence is still not fully understood, especially in the non-convex setting. This paper focuses on exploring hyperparameter settings for the convergence of vanilla Adam and tackling the challenges of non-ergodic convergence related to practical application. The primary contributions are summarized as follows: firstly, we introduce precise definitions of ergodic and non-ergodic convergence, which cover nearly all forms of convergence for stochastic optimization algorithms. Meanwhile, we emphasize the superiority of non-ergodic convergence over ergodic convergence. Secondly, we establish a weaker sufficient condition for the ergodic convergence guarantee of Adam, allowing a more relaxed choice of hyperparameters. On this basis, we achieve the almost sure ergodic convergence rate of Adam, which is arbitrarily close to $o(1/\sqrt{K})$. More importantly, we prove, for the first time, that the last iterate of Adam converges to a stationary point for non-convex objectives. Finally, we obtain the non-ergodic convergence rate of $O(1/K)$ for function values under the Polyak-Lojasiewicz (PL) condition. These findings build a solid theoretical foundation for Adam to solve non-convex stochastic optimization problems.