亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Within a broad class of generative adversarial networks, we show that discriminator optimization process increases a lower bound of the dual cost function for the Wasserstein distance between the target distribution $p$ and the generator distribution $p_G$. It implies that the trained discriminator can approximate optimal transport (OT) from $p_G$ to $p$.Based on some experiments and a bit of OT theory, we propose a discriminator optimal transport (DOT) scheme to improve generated images. We show that it improves inception score and FID calculated by un-conditional GAN trained by CIFAR-10, STL-10 and a public pre-trained model of conditional GAN by ImageNet.

相關內容

We present ReCAT, a recursive composition augmented Transformer that is able to explicitly model hierarchical syntactic structures of raw texts without relying on gold trees during both learning and inference. Existing research along this line restricts data to follow a hierarchical tree structure and thus lacks inter-span communications. To overcome the problem, we propose a novel contextual inside-outside (CIO) layer that learns contextualized representations of spans through bottom-up and top-down passes, where a bottom-up pass forms representations of high-level spans by composing low-level spans, while a top-down pass combines information inside and outside a span. By stacking several CIO layers between the embedding layer and the attention layers in Transformer, the ReCAT model can perform both deep intra-span and deep inter-span interactions, and thus generate multi-grained representations fully contextualized with other spans. Moreover, the CIO layers can be jointly pre-trained with Transformers, making ReCAT enjoy scaling ability, strong performance, and interpretability at the same time. We conduct experiments on various sentence-level and span-level tasks. Evaluation results indicate that ReCAT can significantly outperform vanilla Transformer models on all span-level tasks and baselines that combine recursive networks with Transformers on natural language inference tasks. More interestingly, the hierarchical structures induced by ReCAT exhibit strong consistency with human-annotated syntactic trees, indicating good interpretability brought by the CIO layers.

We show how quantum-inspired 2d tensor networks can be used to efficiently and accurately simulate the largest quantum processors from IBM, namely Eagle (127 qubits), Osprey (433 qubits) and Condor (1121 qubits). We simulate the dynamics of a complex quantum many-body system -- specifically, the kicked Ising experiment considered recently by IBM in Nature 618, p. 500-505 (2023) -- using graph-based Projected Entangled Pair States (gPEPS), which was proposed by some of us in PRB 99, 195105 (2019). Our results show that simple tensor updates are already sufficient to achieve very large unprecedented accuracy with remarkably low computational resources for this model. Apart from simulating the original experiment for 127 qubits, we also extend our results to 433 and 1121 qubits, thus setting a benchmark for the newest IBM quantum machines. We also report accurate simulations for infinitely-many qubits. Our results show that gPEPS are a natural tool to efficiently simulate quantum computers with an underlying lattice-based qubit connectivity, such as all quantum processors based on superconducting qubits.

Spiking Neural Networks, as a third-generation neural network, are well-suited for edge AI applications due to their binary spike nature. However, when it comes to complex tasks like object detection, SNNs often require a substantial number of time steps to achieve high performance. This limitation significantly hampers the widespread adoption of SNNs in latency-sensitive edge devices. In this paper, our focus is on generating highly accurate and low-latency SNNs specifically for object detection. Firstly, we systematically derive the conversion between SNNs and ANNs and analyze how to improve the consistency between them: improving the spike firing rate and reducing the quantization error. Then we propose a structural replacement, quantization of ANN activation and residual fix to allevicate the disparity. We evaluate our method on challenging dataset MS COCO, PASCAL VOC and our spike dataset. The experimental results show that the proposed method achieves higher accuracy and lower latency compared to previous work Spiking-YOLO. The advantages of SNNs processing of spike signals are also demonstrated.

Model averaging (MA), a technique for combining estimators from a set of candidate models, has attracted increasing attention in machine learning and statistics. In the existing literature, there is an implicit understanding that MA can be viewed as a form of shrinkage estimation that draws the response vector towards the subspaces spanned by the candidate models. This paper explores this perspective by establishing connections between MA and shrinkage in a linear regression setting with multiple nested models. We first demonstrate that the optimal MA estimator is the best linear estimator with monotone non-increasing weights in a Gaussian sequence model. The Mallows MA, which estimates weights by minimizing the Mallows' $C_p$, is a variation of the positive-part Stein estimator. Motivated by these connections, we develop a novel MA procedure based on a blockwise Stein estimation. Our resulting Stein-type MA estimator is asymptotically optimal across a broad parameter space when the variance is known. Numerical results support our theoretical findings. The connections established in this paper may open up new avenues for investigating MA from different perspectives. A discussion on some topics for future research concludes the paper.

With more and more deep neural networks being deployed as various daily services, their reliability is essential. It is frightening that deep neural networks are vulnerable and sensitive to adversarial attacks, the most common one of which for the services is evasion-based. Recent works usually strengthen the robustness by adversarial training or leveraging the knowledge of an amount of clean data. However, retraining and redeploying the model need a large computational budget, leading to heavy losses to the online service. In addition, when training, it is likely that only limited adversarial examples are available for the service provider, while much clean data may not be accessible. Based on the analysis on the defense for deployed models, we find that how to rapidly defend against a certain attack for a frozen original service model with limitations of few clean and adversarial examples, which is named as RaPiD (Rapid Plug-in Defender), is really important. Motivated by the generalization and the universal computation ability of pre-trained transformer models, we come up with a new defender method, CeTaD, which stands for Considering Pretrained Transformers as Defenders. In particular, we evaluate the effectiveness and the transferability of CeTaD in the case of one-shot adversarial examples and explore the impact of different parts of CeTaD as well as training data conditions. CeTaD is flexible for different differentiable service models, and suitable for various types of attacks.

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

The new era of technology has brought us to the point where it is convenient for people to share their opinions over an abundance of platforms. These platforms have a provision for the users to express themselves in multiple forms of representations, including text, images, videos, and audio. This, however, makes it difficult for users to obtain all the key information about a topic, making the task of automatic multi-modal summarization (MMS) essential. In this paper, we present a comprehensive survey of the existing research in the area of MMS.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Heterogeneous graph neural networks (HGNNs) as an emerging technique have shown superior capacity of dealing with heterogeneous information network (HIN). However, most HGNNs follow a semi-supervised learning manner, which notably limits their wide use in reality since labels are usually scarce in real applications. Recently, contrastive learning, a self-supervised method, becomes one of the most exciting learning paradigms and shows great potential when there are no labels. In this paper, we study the problem of self-supervised HGNNs and propose a novel co-contrastive learning mechanism for HGNNs, named HeCo. Different from traditional contrastive learning which only focuses on contrasting positive and negative samples, HeCo employs cross-viewcontrastive mechanism. Specifically, two views of a HIN (network schema and meta-path views) are proposed to learn node embeddings, so as to capture both of local and high-order structures simultaneously. Then the cross-view contrastive learning, as well as a view mask mechanism, is proposed, which is able to extract the positive and negative embeddings from two views. This enables the two views to collaboratively supervise each other and finally learn high-level node embeddings. Moreover, two extensions of HeCo are designed to generate harder negative samples with high quality, which further boosts the performance of HeCo. Extensive experiments conducted on a variety of real-world networks show the superior performance of the proposed methods over the state-of-the-arts.

Deep neural networks have achieved remarkable success in computer vision tasks. Existing neural networks mainly operate in the spatial domain with fixed input sizes. For practical applications, images are usually large and have to be downsampled to the predetermined input size of neural networks. Even though the downsampling operations reduce computation and the required communication bandwidth, it removes both redundant and salient information obliviously, which results in accuracy degradation. Inspired by digital signal processing theories, we analyze the spectral bias from the frequency perspective and propose a learning-based frequency selection method to identify the trivial frequency components which can be removed without accuracy loss. The proposed method of learning in the frequency domain leverages identical structures of the well-known neural networks, such as ResNet-50, MobileNetV2, and Mask R-CNN, while accepting the frequency-domain information as the input. Experiment results show that learning in the frequency domain with static channel selection can achieve higher accuracy than the conventional spatial downsampling approach and meanwhile further reduce the input data size. Specifically for ImageNet classification with the same input size, the proposed method achieves 1.41% and 0.66% top-1 accuracy improvements on ResNet-50 and MobileNetV2, respectively. Even with half input size, the proposed method still improves the top-1 accuracy on ResNet-50 by 1%. In addition, we observe a 0.8% average precision improvement on Mask R-CNN for instance segmentation on the COCO dataset.

北京阿比特科技有限公司