亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The widespread usage of cars and other large, heavy vehicles necessitates the development of an effective parking infrastructure. Additionally, algorithms for detection and recognition of number plates are often used to identify automobiles all around the world where standardized plate sizes and fonts are enforced, making recognition an effortless task. As a result, both kinds of data can be combined to develop an intelligent parking system focuses on the technology of Automatic Number Plate Recognition (ANPR). Retrieving characters from an inputted number plate image is the sole purpose of ANPR which is a costly procedure. In this article, we propose Chaurah, a minimal cost ANPR system that relies on a Raspberry Pi 3 that was specifically created for parking facilities. The system employs a dual-stage methodology, with the first stage being an ANPR system which makes use of two convolutional neural networks (CNNs). The primary locates and recognises license plates from a vehicle image, while the secondary performs Optical Character Recognition (OCR) to identify individualized numbers from the number plate. An application built with Flutter and Firebase for database administration and license plate record comparison makes up the second component of the overall solution. The application also acts as an user-interface for the billing mechanism based on parking time duration resulting in an all-encompassing software deployment of the study.

相關內容

The imperative need to scale computation across numerous nodes highlights the significance of efficient parallel computing, particularly in the realm of Message Passing Interface (MPI) integration. The challenging parallel programming task of generating MPI-based parallel programs has remained unexplored. This study first investigates the performance of state-of-the-art language models in generating MPI-based parallel programs. Findings reveal that widely used models such as GPT-3.5 and PolyCoder (specialized multi-lingual code models) exhibit notable performance degradation, when generating MPI-based programs compared to general-purpose programs. In contrast, domain-specific models such as MonoCoder, which are pretrained on MPI-related programming languages of C and C++, outperform larger models. Subsequently, we introduce a dedicated downstream task of MPI-based program generation by fine-tuning MonoCoder on HPCorpusMPI. We call the resulting model as MPIrigen. We propose an innovative preprocessing for completion only after observing the whole code, thus enabling better completion with a wider context. Comparative analysis against GPT-3.5 zero-shot performance, using a novel HPC-oriented evaluation method, demonstrates that MPIrigen excels in generating accurate MPI functions up to 0.8 accuracy in location and function predictions, and with more than 0.9 accuracy for argument predictions. The success of this tailored solution underscores the importance of domain-specific fine-tuning in optimizing language models for parallel computing code generation, paving the way for a new generation of automatic parallelization tools. The sources of this work are available at our GitHub MPIrigen repository: //github.com/Scientific-Computing-Lab-NRCN/MPI-rigen

Anomaly detection in sport facilities has gained significant attention due to its potential to promote energy saving and optimizing operational efficiency. In this research article, we investigate the role of machine learning, particularly deep learning, in anomaly detection for sport facilities. We explore the challenges and perspectives of utilizing deep learning methods for this task, aiming to address the drawbacks and limitations of conventional approaches. Our proposed approach involves feature extraction from the data collected in sport facilities. We present a problem formulation using Deep Feedforward Neural Networks (DFNN) and introduce threshold estimation techniques to identify anomalies effectively. Furthermore, we propose methods to reduce false alarms, ensuring the reliability and accuracy of anomaly detection. To evaluate the effectiveness of our approach, we conduct experiments on aquatic center dataset at Qatar University. The results demonstrate the superiority of our deep learning-based method over conventional techniques, highlighting its potential in real-world applications. Typically, 94.33% accuracy and 92.92% F1-score have been achieved using the proposed scheme.

In autonomous driving, predicting the behavior (turning left, stopping, etc.) of target vehicles is crucial for the self-driving vehicle to make safe decisions and avoid accidents. Existing deep learning-based methods have shown excellent and accurate performance, but the black-box nature makes it untrustworthy to apply them in practical use. In this work, we explore the interpretability of behavior prediction of target vehicles by an Episodic Memory implanted Neural Decision Tree (abbrev. eMem-NDT). The structure of eMem-NDT is constructed by hierarchically clustering the text embedding of vehicle behavior descriptions. eMem-NDT is a neural-backed part of a pre-trained deep learning model by changing the soft-max layer of the deep model to eMem-NDT, for grouping and aligning the memory prototypes of the historical vehicle behavior features in training data on a neural decision tree. Each leaf node of eMem-NDT is modeled by a neural network for aligning the behavior memory prototypes. By eMem-NDT, we infer each instance in behavior prediction of vehicles by bottom-up Memory Prototype Matching (MPM) (searching the appropriate leaf node and the links to the root node) and top-down Leaf Link Aggregation (LLA) (obtaining the probability of future behaviors of vehicles for certain instances). We validate eMem-NDT on BLVD and LOKI datasets, and the results show that our model can obtain a superior performance to other methods with clear explainability. The code is available at //github.com/JWFangit/eMem-NDT.

Scientific modeling applications often require estimating a distribution of parameters consistent with a dataset of observations - an inference task also known as source distribution estimation. This problem can be ill-posed, however, since many different source distributions might produce the same distribution of data-consistent simulations. To make a principled choice among many equally valid sources, we propose an approach which targets the maximum entropy distribution, i.e., prioritizes retaining as much uncertainty as possible. Our method is purely sample-based - leveraging the Sliced-Wasserstein distance to measure the discrepancy between the dataset and simulations - and thus suitable for simulators with intractable likelihoods. We benchmark our method on several tasks, and show that it can recover source distributions with substantially higher entropy without sacrificing the fidelity of the simulations. Finally, to demonstrate the utility of our approach, we infer source distributions for parameters of the Hodgkin-Huxley neuron model from experimental datasets with thousands of measurements. In summary, we propose a principled framework for inferring unique source distributions of scientific simulator parameters while retaining as much uncertainty as possible.

Trajectory planning is a fundamental problem in robotics. It facilitates a wide range of applications in navigation and motion planning, control, and multi-agent coordination. Trajectory planning is a difficult problem due to its computational complexity and real-world environment complexity with uncertainty, non-linearity, and real-time requirements. The multi-agent trajectory planning problem adds another dimension of difficulty due to inter-agent interaction. Existing solutions are either search-based or optimization-based approaches with simplified assumptions of environment, limited planning speed, and limited scalability in the number of agents. In this work, we make the first attempt to reformulate single agent and multi-agent trajectory planning problem as query problems over an implicit neural representation of trajectories. We formulate such implicit representation as Neural Trajectory Models (NTM) which can be queried to generate nearly optimal trajectory in complex environments. We conduct experiments in simulation environments and demonstrate that NTM can solve single-agent and multi-agent trajectory planning problems. In the experiments, NTMs achieve (1) sub-millisecond panning time using GPUs, (2) almost avoiding all environment collision, (3) almost avoiding all inter-agent collision, and (4) generating almost shortest paths. We also demonstrate that the same NTM framework can also be used for trajectories correction and multi-trajectory conflict resolution refining low quality and conflicting multi-agent trajectories into nearly optimal solutions efficiently. (Open source code will be available at //github.com/laser2099/neural-trajectory-model)

Transfer entropy (TE) is a measurement in information theory that reveals the directional flow of information between processes, providing valuable insights for a wide range of real-world applications. This work proposes Transfer Entropy Estimation via Transformers (TREET), a novel transformer-based approach for estimating the TE for stationary processes. The proposed approach employs Donsker-Vardhan (DV) representation to TE and leverages the attention mechanism for the task of neural estimation. We propose a detailed theoretical and empirical study of the TREET, comparing it to existing methods. To increase its applicability, we design an estimated TE optimization scheme that is motivated by the functional representation lemma. Afterwards, we take advantage of the joint optimization scheme to optimize the capacity of communication channels with memory, which is a canonical optimization problem in information theory, and show the memory capabilities of our estimator. Finally, we apply TREET to real-world feature analysis. Our work, applied with state-of-the-art deep learning methods, opens a new door for communication problems which are yet to be solved.

Physical adversarial attacks pose a significant practical threat as it deceives deep learning systems operating in the real world by producing prominent and maliciously designed physical perturbations. Emphasizing the evaluation of naturalness is crucial in such attacks, as humans can readily detect and eliminate unnatural manipulations. To overcome this limitation, recent work has proposed leveraging generative adversarial networks (GANs) to generate naturalistic patches, which may not catch human's attention. However, these approaches suffer from a limited latent space which leads to an inevitable trade-off between naturalness and attack efficiency. In this paper, we propose a novel approach to generate naturalistic and inconspicuous adversarial patches. Specifically, we redefine the optimization problem by introducing an additional loss term to the cost function. This term works as a semantic constraint to ensure that the generated camouflage pattern holds semantic meaning rather than arbitrary patterns. The additional term leverages similarity metrics to construct a similarity loss that we optimize within the global objective function. Our technique is based on directly manipulating the pixel values in the patch, which gives higher flexibility and larger space compared to the GAN-based techniques that are based on indirectly optimizing the patch by modifying the latent vector. Our attack achieves superior success rate of up to 91.19\% and 72\%, respectively, in the digital world and when deployed in smart cameras at the edge compared to the GAN-based technique.

Modern machine learning models require large labelled datasets to achieve good performance, but manually labelling large datasets is expensive and time-consuming. The data programming paradigm enables users to label large datasets efficiently but produces noisy labels, which deteriorates the downstream model's performance. The active learning paradigm, on the other hand, can acquire accurate labels but only for a small fraction of instances. In this paper, we propose ActiveDP, an interactive framework bridging active learning and data programming together to generate labels with both high accuracy and coverage, combining the strengths of both paradigms. Experiments show that ActiveDP outperforms previous weak supervision and active learning approaches and consistently performs well under different labelling budgets.

The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

北京阿比特科技有限公司