Inferring causal structure from data is a challenging task of fundamental importance in science. Observational data are often insufficient to identify a system's causal structure uniquely. While conducting interventions (i.e., experiments) can improve the identifiability, such samples are usually challenging and expensive to obtain. Hence, experimental design approaches for causal discovery aim to minimize the number of interventions by estimating the most informative intervention target. In this work, we propose a novel Gradient-based Intervention Targeting method, abbreviated GIT, that 'trusts' the gradient estimator of a gradient-based causal discovery framework to provide signals for the intervention acquisition function. We provide extensive experiments in simulated and real-world datasets and demonstrate that GIT performs on par with competitive baselines, surpassing them in the low-data regime.
The Johnson-Lindenstrauss (JL) Lemma introduced the concept of dimension reduction via a random linear map, which has become a fundamental technique in many computational settings. For a set of $n$ points in $\mathbb{R}^d$ and any fixed $\epsilon>0$, it reduces the dimension $d$ to $O(\log n)$ while preserving, with high probability, all the pairwise Euclidean distances within factor $1+\epsilon$. Perhaps surprisingly, the target dimension can be lower if one only wishes to preserve the optimal value of a certain problem on the pointset, e.g., Euclidean max-cut or $k$-means. However, for some notorious problems, like diameter (aka furthest pair), dimension reduction via the JL map to below $O(\log n)$ does not preserve the optimal value within factor $1+\epsilon$. We propose to focus on another regime, of \emph{moderate dimension reduction}, where a problem's value is preserved within factor $\alpha>1$ using target dimension $\tfrac{\log n}{poly(\alpha)}$. We establish the viability of this approach and show that the famous $k$-center problem is $\alpha$-approximated when reducing to dimension $O(\tfrac{\log n}{\alpha^2}+\log k)$. Along the way, we address the diameter problem via the special case $k=1$. Our result extends to several important variants of $k$-center (with outliers, capacities, or fairness constraints), and the bound improves further with the input's doubling dimension. While our $poly(\alpha)$-factor improvement in the dimension may seem small, it actually has significant implications for streaming algorithms, and easily yields an algorithm for $k$-center in dynamic geometric streams, that achieves $O(\alpha)$-approximation using space $poly(kdn^{1/\alpha^2})$. This is the first algorithm to beat $O(n)$ space in high dimension $d$, as all previous algorithms require space at least $\exp(d)$. Furthermore, it extends to the $k$-center variants mentioned above.
A key challenge in contrastive learning is to generate negative samples from a large sample set to contrast with positive samples, for learning better encoding of the data. These negative samples often follow a softmax distribution which are dynamically updated during the training process. However, sampling from this distribution is non-trivial due to the high computational costs in computing the partition function. In this paper, we propose an Efficient Markov Chain Monte Carlo negative sampling method for Contrastive learning (EMC$^2$). We follow the global contrastive learning loss as introduced in SogCLR, and propose EMC$^2$ which utilizes an adaptive Metropolis-Hastings subroutine to generate hardness-aware negative samples in an online fashion during the optimization. We prove that EMC$^2$ finds an $\mathcal{O}(1/\sqrt{T})$-stationary point of the global contrastive loss in $T$ iterations. Compared to prior works, EMC$^2$ is the first algorithm that exhibits global convergence (to stationarity) regardless of the choice of batch size while exhibiting low computation and memory cost. Numerical experiments validate that EMC$^2$ is effective with small batch training and achieves comparable or better performance than baseline algorithms. We report the results for pre-training image encoders on STL-10 and Imagenet-100.
Large neural network models have become a mainstay of natural language processing and computer vision, yet their initialization and learning rates are set in a largely heuristic fashion, potentially varying from paper to paper and one model size to the next. The $\mu$-Parameterization ($\mu$P) offers a potential solution to these challenges, yielding scaling rules for model initialization and learning rates, and reportedly enabling zero-shot hyperparameter transfer from small to large models in a variety of cases. Despite the evident promise, the $\mu$P scaling rules are not yet widely adopted, perhaps due to higher implementation complexity, many variations, or complex theoretical background. This work investigates $\mu$P empirically, focusing on the ubiquitous transformer architecture, and aims to answer a simple question: does $\mu$-Transfer yield optimal learning rates in practice? From models with 2M to 10B parameters, we show that $\mu$-Transfer works as intended for the majority of important cases, but also identify some surprising cases where it may not. Our experiment codebase is available at //github.com/lucaslingle/mu_transformer/
Adam with decoupled weight decay, also known as AdamW, is widely acclaimed for its superior performance in language modeling tasks, surpassing Adam with $\ell_2$ regularization in terms of generalization and optimization. However, this advantage is not theoretically well-understood. One challenge here is that though intuitively Adam with $\ell_2$ regularization optimizes the $\ell_2$ regularized loss, it is not clear if AdamW optimizes a specific objective. In this work, we make progress toward understanding the benefit of AdamW by showing that it implicitly performs constrained optimization. More concretely, we show in the full-batch setting, if AdamW converges with any non-increasing learning rate schedule whose partial sum diverges, it must converge to a KKT point of the original loss under the constraint that the $\ell_\infty$ norm of the parameter is bounded by the inverse of the weight decay factor. This result is built on the observation that Adam can be viewed as a smoothed version of SignGD, which is the normalized steepest descent with respect to $\ell_\infty$ norm, and a surprising connection between normalized steepest descent with weight decay and Frank-Wolfe.
Given an arbitrary set of high dimensional points in $\ell_1$, there are known negative results that preclude the possibility of always mapping them to a low dimensional $\ell_1$ space while preserving distances with small multiplicative distortion. This is in stark contrast with dimension reduction in Euclidean space ($\ell_2$) where such mappings are always possible. While the first non-trivial lower bounds for $\ell_1$ dimension reduction were established almost 20 years ago, there has been limited progress in understanding what sets of points in $\ell_1$ are conducive to a low-dimensional mapping. In this work, we study a new characterization of $\ell_1$ metrics that are conducive to dimension reduction in $\ell_1$. Our characterization focuses on metrics that are defined by the disagreement of binary variables over a probability distribution -- any $\ell_1$ metric can be represented in this form. We show that, for configurations of $n$ points in $\ell_1$ obtained from tree Ising models, we can reduce dimension to $\mathrm{polylog}(n)$ with constant distortion. In doing so, we develop technical tools for embedding truncated metrics which have been studied because of their applications in computer vision, and are objects of independent interest in metric geometry. Among other tools, we show how any $\ell_1$ metric can be truncated with $O(1)$ distortion and $O(\log(n))$ blowup in dimension.
The Quantified Constraint Satisfaction Problem is the problem of evaluating a sentence with both quantifiers, over relations from some constraint language, with conjunction as the only connective. We show that for any constraint language on a finite domain the Quantified Constraint Satisfaction Problem is either in $\Pi_{2}^{P}$, or PSpace-complete. Additionally, we build a constraint language on a 6-element domain such that the Quantified Constraint Satisfaction Problem over this language is $\Pi_{2}^{P}$-complete.
Seasonal forecasting is a crucial task when it comes to detecting the extreme heat and colds that occur due to climate change. Confidence in the predictions should be reliable since a small increase in the temperatures in a year has a big impact on the world. Calibration of the neural networks provides a way to ensure our confidence in the predictions. However, calibrating regression models is an under-researched topic, especially in forecasters. We calibrate a UNet++ based architecture, which was shown to outperform physics-based models in temperature anomalies. We show that with a slight trade-off between prediction error and calibration error, it is possible to get more reliable and sharper forecasts. We believe that calibration should be an important part of safety-critical machine learning applications such as weather forecasters.
The coalgebraic $\mu$-calculus provides a generic semantic framework for fixpoint logics over systems whose branching type goes beyond the standard relational setup, e.g. probabilistic, weighted, or game-based. Previous work on the coalgebraic $\mu$-calculus includes an exponential-time upper bound on satisfiability checking, which however relies on the availability of tableau rules for the next-step modalities that are sufficiently well-behaved in a formally defined sense; in particular, rule matches need to be representable by polynomial-sized codes, and the sequent duals of the rules need to absorb cut. While such rule sets have been identified for some important cases, they are not known to exist in all cases of interest, in particular ones involving either integer weights as in the graded $\mu$-calculus, or real-valued weights in combination with non-linear arithmetic. In the present work, we prove the same upper complexity bound under more general assumptions, specifically regarding the complexity of the (much simpler) satisfiability problem for the underlying one-step logic, roughly described as the nesting-free next-step fragment of the logic. The bound is realized by a generic global caching algorithm that supports on-the-fly satisfiability checking. Notably, our approach directly accommodates unguarded formulae, and thus avoids use of the guardedness transformation. Example applications include new exponential-time upper bounds for satisfiability checking in an extension of the graded $\mu$-calculus with polynomial inequalities (including positive Presburger arithmetic), as well as an extension of the (two-valued) probabilistic $\mu$-calculus with polynomial inequalities.
In Model Predictive Control (MPC), discrepancies between the actual system and the predictive model can lead to substantial tracking errors and significantly degrade performance and reliability. While such discrepancies can be alleviated with more complex models, this often complicates controller design and implementation. By leveraging the fact that many trajectories of interest are periodic, we show that perfect tracking is possible when incorporating a simple observer that estimates and compensates for periodic disturbances. We present the design of the observer and the accompanying tracking MPC scheme, proving that their combination achieves zero tracking error asymptotically, regardless of the complexity of the unmodelled dynamics. We validate the effectiveness of our method, demonstrating asymptotically perfect tracking on a high-dimensional soft robot with nearly 10,000 states and a fivefold reduction in tracking errors compared to a baseline MPC on small-scale autonomous race car experiments.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.