亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The coalgebraic $\mu$-calculus provides a generic semantic framework for fixpoint logics over systems whose branching type goes beyond the standard relational setup, e.g. probabilistic, weighted, or game-based. Previous work on the coalgebraic $\mu$-calculus includes an exponential-time upper bound on satisfiability checking, which however relies on the availability of tableau rules for the next-step modalities that are sufficiently well-behaved in a formally defined sense; in particular, rule matches need to be representable by polynomial-sized codes, and the sequent duals of the rules need to absorb cut. While such rule sets have been identified for some important cases, they are not known to exist in all cases of interest, in particular ones involving either integer weights as in the graded $\mu$-calculus, or real-valued weights in combination with non-linear arithmetic. In the present work, we prove the same upper complexity bound under more general assumptions, specifically regarding the complexity of the (much simpler) satisfiability problem for the underlying one-step logic, roughly described as the nesting-free next-step fragment of the logic. The bound is realized by a generic global caching algorithm that supports on-the-fly satisfiability checking. Notably, our approach directly accommodates unguarded formulae, and thus avoids use of the guardedness transformation. Example applications include new exponential-time upper bounds for satisfiability checking in an extension of the graded $\mu$-calculus with polynomial inequalities (including positive Presburger arithmetic), as well as an extension of the (two-valued) probabilistic $\mu$-calculus with polynomial inequalities.

相關內容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系統編譯器、體系結構和綜合國際會議。 Publisher:ACM。 SIT:

In the study of Hilbert schemes, the integer partition $\lambda$ helps researchers identify some geometric and combinatorial properties of the scheme in question. To aid researchers in extracting such information from a Hilbert polynomial, we describe an efficient algorithm which can identify if $p(x)\in\mathbb{Q}[x]$ is a Hilbert polynomial and if so, recover the integer partition $\lambda$ associated with it.

This article presents MAPS$^2$ : a distributed algorithm that allows multi-robot systems to deliver coupled tasks expressed as Signal Temporal Logic (STL) constraints. Classical control theoretical tools addressing STL constraints either adopt a limited fragment of the STL formula or require approximations of min/max operators, whereas works maximising robustness through optimisation-based methods often suffer from local minima, relaxing any completeness arguments due to the NP-hard nature of the problem. Endowed with probabilistic guarantees, MAPS$^2$ provides an anytime algorithm that iteratively improves the robots' trajectories. The algorithm selectively imposes spatial constraints by taking advantage of the temporal properties of the STL. The algorithm is distributed, in the sense that each robot calculates its trajectory by communicating only with its immediate neighbours as defined via a communication graph. We illustrate the efficiency of MAPS$^2$ by conducting extensive simulation and experimental studies, verifying the generation of STL satisfying trajectories.

We examine sorting algorithms for $n$ elements whose basic operation is comparing $t$ elements simultaneously (a $t$-comparator). We focus on algorithms that use only a single round or two rounds -- comparisons performed in the second round depend on the outcomes of the first round comparators. We design deterministic and randomized algorithms. In the deterministic case, we show an interesting relation to design theory (namely, to 2-Steiner systems), which yields a single-round optimal algorithm for $n=t^{2^k}$ with any $k\ge 1$ and a variety of possible values of $t$. For some values of $t$, however, no algorithm can reach the optimal (information-theoretic) bound on the number of comparators. For this case (and any other $n$ and $t$), we show an algorithm that uses at most three times as many comparators as the theoretical bound. We also design a randomized Las-Vegas two-rounds sorting algorithm for any $n$ and $t$. Our algorithm uses an asymptotically optimal number of $O(\max(\frac{n^{3/2}}{t^2},\frac{n}{t}))$ comparators, with high probability, i.e., with probability at least $1-1/n$. The analysis of this algorithm involves the gradual unveiling of randomness, using a novel technique which we coin the binary tree of deferred randomness.

In this paper we propose an $\ell_1$-regularized GLS estimator for high-dimensional regressions with potentially autocorrelated errors. We establish non-asymptotic oracle inequalities for estimation accuracy in a framework that allows for highly persistent autoregressive errors. In practice, the Whitening matrix required to implement the GLS is unkown, we present a feasible estimator for this matrix, derive consistency results and ultimately show how our proposed feasible GLS can recover closely the optimal performance (as if the errors were a white noise) of the LASSO. A simulation study verifies the performance of the proposed method, demonstrating that the penalized (feasible) GLS-LASSO estimator performs on par with the LASSO in the case of white noise errors, whilst outperforming it in terms of sign-recovery and estimation error when the errors exhibit significant correlation.

In deep learning, classification tasks are formalized as optimization problems often solved via the minimization of the cross-entropy. However, recent advancements in the design of objective functions allow the usage of the $f$-divergence to generalize the formulation of the optimization problem for classification. We adopt a Bayesian perspective and formulate the classification task as a maximum a posteriori probability problem. We propose a class of objective functions based on the variational representation of the $f$-divergence. Furthermore, driven by the challenge of improving the state-of-the-art approach, we propose a bottom-up method that leads us to the formulation of an objective function corresponding to a novel $f$-divergence referred to as shifted log (SL). We theoretically analyze the objective functions proposed and numerically test them in three application scenarios: toy examples, image datasets, and signal detection/decoding problems. The analyzed scenarios demonstrate the effectiveness of the proposed approach and that the SL divergence achieves the highest classification accuracy in almost all the considered cases.

Fairness in decision-making processes is often quantified using probabilistic metrics. However, these metrics may not fully capture the real-world consequences of unfairness. In this article, we adopt a utility-based approach to more accurately measure the real-world impacts of decision-making process. In particular, we show that if the concept of $\varepsilon$-fairness is employed, it can possibly lead to outcomes that are maximally unfair in the real-world context. Additionally, we address the common issue of unavailable data on false negatives by proposing a reduced setting that still captures essential fairness considerations. We illustrate our findings with two real-world examples: college admissions and credit risk assessment. Our analysis reveals that while traditional probability-based evaluations might suggest fairness, a utility-based approach uncovers the necessary actions to truly achieve equality. For instance, in the college admission case, we find that enhancing completion rates is crucial for ensuring fairness. Summarizing, this paper highlights the importance of considering the real-world context when evaluating fairness.

We present fully abstract encodings of the call-by-name and call-by-value $\lambda$-calculus into HOcore, a minimal higher-order process calculus with no name restriction. We consider several equivalences on the $\lambda$-calculus side -- normal-form bisimilarity, applicative bisimilarity, and contextual equivalence -- that we internalize into abstract machines in order to prove full abstraction of the encodings. We also demonstrate that this technique scales to the $\lambda\mu$-calculus, i.e., a standard extension of the $\lambda$-calculus with control operators.

The problem of computing $\alpha$-capacity for $\alpha>1$ is equivalent to that of computing the correct decoding exponent. Various algorithms for computing them have been proposed, such as Arimoto and Jitsumatsu--Oohama algorithm. In this study, we propose a novel alternating optimization algorithm for computing the $\alpha$-capacity for $\alpha>1$ based on a variational characterization of the Augustin--Csisz{\'a}r mutual information. A comparison of the convergence performance of these algorithms is demonstrated through numerical examples.

For a fixed positive integer $d \geq 2$, a distance-$d$ independent set (D$d$IS) of a graph is a vertex subset whose distance between any two members is at least $d$. Imagine that there is a token placed on each member of a D$d$IS. Two D$d$ISs are adjacent under Token Sliding ($\mathsf{TS}$) if one can be obtained from the other by moving a token from one vertex to one of its unoccupied adjacent vertices. Under Token Jumping ($\mathsf{TJ}$), the target vertex needs not to be adjacent to the original one. The Distance-$d$ Independent Set Reconfiguration (D$d$ISR) problem under $\mathsf{TS}/\mathsf{TJ}$ asks if there is a corresponding sequence of adjacent D$d$ISs that transforms one given D$d$IS into another. The problem for $d = 2$, also known as the Independent Set Reconfiguration problem, has been well-studied in the literature and its computational complexity on several graph classes has been known. In this paper, we study the computational complexity of D$d$ISR on different graphs under $\mathsf{TS}$ and $\mathsf{TJ}$ for any fixed $d \geq 3$. On chordal graphs, we show that D$d$ISR under $\mathsf{TJ}$ is in $\mathtt{P}$ when $d$ is even and $\mathtt{PSPACE}$-complete when $d$ is odd. On split graphs, there is an interesting complexity dichotomy: D$d$ISR is $\mathtt{PSPACE}$-complete for $d = 2$ but in $\mathtt{P}$ for $d=3$ under $\mathsf{TS}$, while under $\mathsf{TJ}$ it is in $\mathtt{P}$ for $d = 2$ but $\mathtt{PSPACE}$-complete for $d = 3$. Additionally, certain well-known hardness results for $d = 2$ on perfect graphs and planar graphs of maximum degree three and bounded bandwidth can be extended for $d \geq 3$.

This paper introduces a novel class of PICOD($t$) problems referred to as $g$-group complete-$S$ PICOD($t$) problems. It constructs a multi-stage achievability scheme to generate pliable index codes for group complete PICOD problems when $S = \{s\}$ is a singleton set. Using the maximum acyclic induced subgraph bound, lower bounds on the broadcast rate are derived for singleton $S$, which establishes the optimality of the achievability scheme for a range of values for $t$ and for any $g$ and $s$. For all other values, it is shown that the achievability scheme is optimal among the restricted class of broadcast codes.

北京阿比特科技有限公司