亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

When studying the association between treatment and a clinical outcome, a parametric multivariable model of the conditional outcome expectation is often used to adjust for covariates. The treatment coefficient of the outcome model targets a conditional treatment effect. Model-based standardization is typically applied to average the model predictions over the target covariate distribution, and generate a covariate-adjusted estimate of the marginal treatment effect. The standard approach to model-based standardization involves maximum-likelihood estimation and use of the non-parametric bootstrap. We introduce a novel, general-purpose, model-based standardization method based on multiple imputation that is easily applicable when the outcome model is a generalized linear model. We term our proposed approach multiple imputation marginalization (MIM). MIM consists of two main stages: the generation of synthetic datasets and their analysis. MIM accommodates a Bayesian statistical framework, which naturally allows for the principled propagation of uncertainty, integrates the analysis into a probabilistic framework, and allows for the incorporation of prior evidence. We conduct a simulation study to benchmark the finite-sample performance of MIM in conjunction with a parametric outcome model. The simulations provide proof-of-principle in scenarios with binary outcomes, continuous-valued covariates, a logistic outcome model and the marginal log odds ratio as the target effect measure. When parametric modeling assumptions hold, MIM yields unbiased estimation in the target covariate distribution, valid coverage rates, and similar precision and efficiency than the standard approach to model-based standardization.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Learning · DenseNet · 卷積 · Neural Networks ·
2024 年 2 月 15 日

Non-Hermitian topological phases can produce some remarkable properties, compared with their Hermitian counterpart, such as the breakdown of conventional bulk-boundary correspondence and the non-Hermitian topological edge mode. Here, we introduce several algorithms with multi-layer perceptron (MLP), and convolutional neural network (CNN) in the field of deep learning, to predict the winding of eigenvalues non-Hermitian Hamiltonians. Subsequently, we use the smallest module of the periodic circuit as one unit to construct high-dimensional circuit data features. Further, we use the Dense Convolutional Network (DenseNet), a type of convolutional neural network that utilizes dense connections between layers to design a non-Hermitian topolectrical Chern circuit, as the DenseNet algorithm is more suitable for processing high-dimensional data. Our results demonstrate the effectiveness of the deep learning network in capturing the global topological characteristics of a non-Hermitian system based on training data.

Vertebral fractures prediction in clinics lacks of accuracy. The most used scores have limitations in distinguishing between subjects at risk or not. Finite element (FE) models generated from computed tomography (CT) of these patients may improve the predictive capability. Many models have already been proposed but the most of them considered the single vertebral body, excluding from the analysis the role of the inter-vertebral discs in the distribution of the load through the spine. Multi-vertebral models instead allow to examine more complex boundary condition. However, CT scans do not provide subject-specif information about the material properties of the disc. Consequently, the goal of the study was to validate a multi-vertebral FE model with subject specific modelling of the vertebral bone and population-based properties assigned to the disc, idealizing them with a linear isotropic material. Boundary condition were assigned in order to reproduce an experimental test performed on the same specimen and recorded using digital image correlation technique (DIC). FE and DIC strains on the vertebral surfaces are compared point-wise. Young's modulus values in the range 25-30 MPa allowed to achieve a comparable order of magnitude between experimental and computational data. However, the two distribution remained strongly different. To conclude, subject-specific material properties need to be assigned also to the discs as well as to the vertebrae to achieve acceptable accuracy in the assessment of the fracture risk.

The integration of large language models (LLMs) into the medical field has gained significant attention due to their promising accuracy in simulated clinical decision-making settings. However, clinical decision-making is more complex than simulations because physicians' decisions are shaped by many factors, including the presence of cognitive bias. However, the degree to which LLMs are susceptible to the same cognitive biases that affect human clinicians remains unexplored. Our hypothesis posits that when LLMs are confronted with clinical questions containing cognitive biases, they will yield significantly less accurate responses compared to the same questions presented without such biases. In this study, we developed BiasMedQA, a novel benchmark for evaluating cognitive biases in LLMs applied to medical tasks. Using BiasMedQA we evaluated six LLMs, namely GPT-4, Mixtral-8x70B, GPT-3.5, PaLM-2, Llama 2 70B-chat, and the medically specialized PMC Llama 13B. We tested these models on 1,273 questions from the US Medical Licensing Exam (USMLE) Steps 1, 2, and 3, modified to replicate common clinically-relevant cognitive biases. Our analysis revealed varying effects for biases on these LLMs, with GPT-4 standing out for its resilience to bias, in contrast to Llama 2 70B-chat and PMC Llama 13B, which were disproportionately affected by cognitive bias. Our findings highlight the critical need for bias mitigation in the development of medical LLMs, pointing towards safer and more reliable applications in healthcare.

Motivated by the important statistical role of sparsity, the paper uncovers four reparametrizations for covariance matrices in which sparsity is associated with conditional independence graphs in a notional Gaussian model. The intimate relationship between the Iwasawa decomposition of the general linear group and the open cone of positive definite matrices allows a unifying perspective. Specifically, the positive definite cone can be reconstructed without loss or redundancy from the exponential map applied to four Lie subalgebras determined by the Iwasawa decomposition of the general linear group. This accords geometric interpretations to the reparametrizations and the corresponding notion of sparsity. Conditions that ensure legitimacy of the reparametrizations for statistical models are identified. While the focus of this work is on understanding population-level structure, there are strong methodological implications. In particular, since the population-level sparsity manifests in a vector space, imposition of sparsity on relevant sample quantities produces a covariance estimate that respects the positive definite cone constraint.

Based on interactions between individuals and others and references to social norms, this study reveals the impact of heterogeneity in time preference on wealth distribution and inequality. We present a novel approach that connects the interactions between microeconomic agents that generate heterogeneity to the dynamic equations for capital and consumption in macroeconomic models. Using this approach, we estimate the impact of changes in the discount rate due to microeconomic interactions on capital, consumption and utility and the degree of inequality. The results show that intercomparisons with others regarding consumption significantly affect capital, i.e. wealth inequality. Furthermore, the impact on utility is never small and social norms can reduce this impact. Our supporting evidence shows that the quantitative results of inequality calculations correspond to survey data from cohort and cross-cultural studies. This study's micro-macro connection approach can be deployed to connect microeconomic interactions, such as exchange, interest and debt, redistribution, mutual aid and time preference, to dynamic macroeconomic models.

Dynamical low-rank approximation has become a valuable tool to perform an on-the-fly model order reduction for prohibitively large matrix differential equations. A core ingredient is the construction of integrators that are robust to the presence of small singular values and the resulting large time derivatives of the orthogonal factors in the low-rank matrix representation. Recently, the robust basis-update & Galerkin (BUG) class of integrators has been introduced. These methods require no steps that evolve the solution backward in time, often have favourable structure-preserving properties, and allow for parallel time-updates of the low-rank factors. The BUG framework is flexible enough to allow for adaptations to these and further requirements. However, the BUG methods presented so far have only first-order robust error bounds. This work proposes a second-order BUG integrator for dynamical low-rank approximation based on the midpoint rule. The integrator first performs a half-step with a first-order BUG integrator, followed by a Galerkin update with a suitably augmented basis. We prove a robust second-order error bound which in addition shows an improved dependence on the normal component of the vector field. These rigorous results are illustrated and complemented by a number of numerical experiments.

We study the problem of training diffusion models to sample from a distribution with a given unnormalized density or energy function. We benchmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods (continuous generative flow networks). Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work. We also propose a novel exploration strategy for off-policy methods, based on local search in the target space with the use of a replay buffer, and show that it improves the quality of samples on a variety of target distributions. Our code for the sampling methods and benchmarks studied is made public at //github.com/GFNOrg/gfn-diffusion as a base for future work on diffusion models for amortized inference.

Artificial intelligence (AI) systems have the potential to revolutionize clinical practices, including improving diagnostic accuracy and surgical decision-making, while also reducing costs and manpower. However, it is important to recognize that these systems may perpetuate social inequities or demonstrate biases, such as those based on race or gender. Such biases can occur before, during, or after the development of AI models, making it critical to understand and address potential biases to enable the accurate and reliable application of AI models in clinical settings. To mitigate bias concerns during model development, we surveyed recent publications on different debiasing methods in the fields of biomedical natural language processing (NLP) or computer vision (CV). Then we discussed the methods that have been applied in the biomedical domain to address bias. We performed our literature search on PubMed, ACM digital library, and IEEE Xplore of relevant articles published between January 2018 and December 2023 using multiple combinations of keywords. We then filtered the result of 10,041 articles automatically with loose constraints, and manually inspected the abstracts of the remaining 890 articles to identify the 55 articles included in this review. Additional articles in the references are also included in this review. We discuss each method and compare its strengths and weaknesses. Finally, we review other potential methods from the general domain that could be applied to biomedicine to address bias and improve fairness.The bias of AIs in biomedicine can originate from multiple sources. Existing debiasing methods that focus on algorithms can be categorized into distributional or algorithmic.

In many practical studies, learning directionality between a pair of variables is of great interest while notoriously hard when their underlying relation is nonlinear. This paper presents a method that examines asymmetry in exposure-outcome pairs when a priori assumptions about their relative ordering are unavailable. Our approach utilizes a framework of generative exposure mapping (GEM) to study asymmetric relations in continuous exposure-outcome pairs, through which we can capture distributional asymmetries with no prefixed variable ordering. We propose a coefficient of asymmetry to quantify relational asymmetry using Shannon's entropy analytics as well as statistical estimation and inference for such an estimand of directionality. Large-sample theoretical guarantees are established for cross-fitting inference techniques. The proposed methodology is extended to allow both measured confounders and contamination in outcome measurements, which is extensively evaluated through extensive simulation studies and real data applications.

We adopt the integral definition of the fractional Laplace operator and study an optimal control problem on Lipschitz domains that involves a fractional elliptic partial differential equation (PDE) as state equation and a control variable that enters the state equation as a coefficient; pointwise constraints on the control variable are considered as well. We establish the existence of optimal solutions and analyze first and, necessary and sufficient, second order optimality conditions. Regularity estimates for optimal variables are also analyzed. We develop two finite element discretization strategies: a semidiscrete scheme in which the control variable is not discretized, and a fully discrete scheme in which the control variable is discretized with piecewise constant functions. For both schemes, we analyze the convergence properties of discretizations and derive error estimates.

北京阿比特科技有限公司