亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated Learning (FL) has become an attractive approach to collaboratively train Machine Learning (ML) models while data sources' privacy is still preserved. However, most of existing FL approaches are based on supervised techniques, which could require resource-intensive activities and human intervention to obtain labelled datasets. Furthermore, in the scope of cyberattack detection, such techniques are not able to identify previously unknown threats. In this direction, this work proposes a novel unsupervised FL approach for the identification of potential misbehavior in vehicular environments. We leverage the computing capabilities of public cloud services for model aggregation purposes, and also as a central repository of misbehavior events, enabling cross-vehicle learning and collective defense strategies. Our solution integrates the use of Gaussian Mixture Models (GMM) and Variational Autoencoders (VAE) on the VeReMi dataset in a federated environment, where each vehicle is intended to train only with its own data. Furthermore, we use Restricted Boltzmann Machines (RBM) for pre-training purposes, and Fedplus as aggregation function to enhance model's convergence. Our approach provides better performance (more than 80 percent) compared to recent proposals, which are usually based on supervised techniques and artificial divisions of the VeReMi dataset.

相關內容

In the field of 2D image generation modeling and representation learning, Masked Generative Encoder (MAGE) has demonstrated the synergistic potential between generative modeling and representation learning. Inspired by this, we propose Point-MAGE to extend this concept to point cloud data. Specifically, this framework first utilizes a Vector Quantized Variational Autoencoder (VQVAE) to reconstruct a neural field representation of 3D shapes, thereby learning discrete semantic features of point patches. Subsequently, by combining the masking model with variable masking ratios, we achieve synchronous training for both generation and representation learning. Furthermore, our framework seamlessly integrates with existing point cloud self-supervised learning (SSL) models, thereby enhancing their performance. We extensively evaluate the representation learning and generation capabilities of Point-MAGE. In shape classification tasks, Point-MAGE achieved an accuracy of 94.2% on the ModelNet40 dataset and 92.9% (+1.3%) on the ScanObjectNN dataset. Additionally, it achieved new state-of-the-art performance in few-shot learning and part segmentation tasks. Experimental results also confirmed that Point-MAGE can generate detailed and high-quality 3D shapes in both unconditional and conditional settings.

We consider a class of latent Gaussian models with a univariate link function (ULLGMs). These are based on standard likelihood specifications (such as Poisson, Binomial, Bernoulli, Erlang, etc.) but incorporate a latent normal linear regression framework on a transformation of a key scalar parameter. We allow for model uncertainty regarding the covariates included in the regression. The ULLGM class typically accommodates extra dispersion in the data and has clear advantages for deriving theoretical properties and designing computational procedures. We formally characterize posterior existence under a convenient and popular improper prior and propose an efficient Markov chain Monte Carlo algorithm for Bayesian model averaging in ULLGMs. Simulation results suggest that the framework provides accurate results that are robust to some degree of misspecification. The methodology is successfully applied to measles vaccination coverage data from Ethiopia and to data on bilateral migration flows between OECD countries.

Foundation models, such as Large language Models (LLMs), have attracted significant amount of interest due to their large number of applications. However, when handling tasks involving repetitive sub-tasks and/or deceptive contents, such as arithmetic calculation and article-level fake news detection, simple instructional prompts suffer from inaccurate responses. Existing works show that more complicated prompting strategies, such as Chain-of-Thoughts and Least-to-Most, can unlock LLM's powerful capacity in diverse areas. Recent researches reveal that simple divide-and-conquer prompting strategy, i.e. simply dividing the input sequence to multiple sub-inputs, can also substantially improve LLM's performance in some specific tasks such as misinformation detection. In this paper, we aim at examining the utility of divide-and-conquer prompting strategy and answer on which kind of tasks this strategy gets advantages. Specifically, we provide a theoretic analysis to divide-and-conquer prompting strategy and help us identify the specific tasks where DaC prompting can bring performance boost with theoretic guarantee. We then present two cases (large integer arithmetic and fact verification) where experimental results aligns with our theoretic analysis.

Language models (LMs) are known to suffer from forgetting of previously learned examples when fine-tuned, breaking stability of deployed LM systems. Despite efforts on mitigating forgetting, few have investigated whether, and how forgotten upstream examples are associated with newly learned tasks. Insights on such associations enable efficient and targeted mitigation of forgetting. In this paper, we empirically analyze forgetting that occurs in $N$ upstream examples while the model learns $M$ new tasks and visualize their associations with a $M \times N$ matrix. We empirically demonstrate that the degree of forgetting can often be approximated by simple multiplicative contributions of the upstream examples and newly learned tasks. We also reveal more complicated patterns where specific subsets of examples are forgotten with statistics and visualization. Following our analysis, we predict forgetting that happens on upstream examples when learning a new task with matrix completion over the empirical associations, outperforming prior approaches that rely on trainable LMs. Project website: //inklab.usc.edu/lm-forgetting-prediction/

Diffusion models are powerful generative models that allow for precise control over the characteristics of the generated samples. While these diffusion models trained on large datasets have achieved success, there is often a need to introduce additional controls in downstream fine-tuning processes, treating these powerful models as pre-trained diffusion models. This work presents a novel method based on reinforcement learning (RL) to add additional controls, leveraging an offline dataset comprising inputs and corresponding labels. We formulate this task as an RL problem, with the classifier learned from the offline dataset and the KL divergence against pre-trained models serving as the reward functions. We introduce our method, $\textbf{CTRL}$ ($\textbf{C}$onditioning pre-$\textbf{T}$rained diffusion models with $\textbf{R}$einforcement $\textbf{L}$earning), which produces soft-optimal policies that maximize the abovementioned reward functions. We formally demonstrate that our method enables sampling from the conditional distribution conditioned on additional controls during inference. Our RL-based approach offers several advantages over existing methods. Compared to commonly used classifier-free guidance, our approach improves sample efficiency, and can greatly simplify offline dataset construction by exploiting conditional independence between the inputs and additional controls. Furthermore, unlike classifier guidance, we avoid the need to train classifiers from intermediate states to additional controls.

Segmentation models for brain lesions in MRI are commonly developed for a specific disease and trained on data with a predefined set of MRI modalities. Each such model cannot segment the disease using data with a different set of MRI modalities, nor can it segment any other type of disease. Moreover, this training paradigm does not allow a model to benefit from learning from heterogeneous databases that may contain scans and segmentation labels for different types of brain pathologies and diverse sets of MRI modalities. Is it feasible to use Federated Learning (FL) for training a single model on client databases that contain scans and labels of different brain pathologies and diverse sets of MRI modalities? We demonstrate promising results by combining appropriate, simple, and practical modifications to the model and training strategy: Designing a model with input channels that cover the whole set of modalities available across clients, training with random modality drop, and exploring the effects of feature normalization methods. Evaluation on 7 brain MRI databases with 5 different diseases shows that such FL framework can train a single model that is shown to be very promising in segmenting all disease types seen during training. Importantly, it is able to segment these diseases in new databases that contain sets of modalities different from those in training clients. These results demonstrate, for the first time, feasibility and effectiveness of using FL to train a single segmentation model on decentralised data with diverse brain diseases and MRI modalities, a necessary step towards leveraging heterogeneous real-world databases. Code will be made available at: //github.com/FelixWag/FL-MultiDisease-MRI

The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司