We derive upper bounds for random design linear regression with dependent ($\beta$-mixing) data absent any realizability assumptions. In contrast to the strictly realizable martingale noise regime, no sharp instance-optimal non-asymptotics are available in the literature. Up to constant factors, our analysis correctly recovers the variance term predicted by the Central Limit Theorem -- the noise level of the problem -- and thus exhibits graceful degradation as we introduce misspecification. Past a burn-in, our result is sharp in the moderate deviations regime, and in particular does not inflate the leading order term by mixing time factors.
In this paper, we study linear regression applied to data structured on a manifold. We assume that the data manifold is smooth and is embedded in a Euclidean space, and our objective is to reveal the impact of the data manifold's extrinsic geometry on the regression. Specifically, we analyze the impact of the manifold's curvatures (or higher order nonlinearity in the parameterization when the curvatures are locally zero) on the uniqueness of the regression solution. Our findings suggest that the corresponding linear regression does not have a unique solution when the embedded submanifold is flat in some dimensions. Otherwise, the manifold's curvature (or higher order nonlinearity in the embedding) may contribute significantly, particularly in the solution associated with the normal directions of the manifold. Our findings thus reveal the role of data manifold geometry in ensuring the stability of regression models for out-of-distribution inferences.
Large language models (LLMs) have brought significant and transformative changes in human society. These models have demonstrated remarkable capabilities in natural language understanding and generation, leading to various advancements and impacts across several domains. We consider the in-context learning under two formulation for attention related regression in this work. Given matrices $A_1 \in \mathbb{R}^{n \times d}$, and $A_2 \in \mathbb{R}^{n \times d}$ and $B \in \mathbb{R}^{n \times n}$, the purpose is to solve some certain optimization problems: Normalized version $\min_{X} \| D(X)^{-1} \exp(A_1 X A_2^\top) - B \|_F^2$ and Rescaled version $\| \exp(A_1 X A_2^\top) - D(X) \cdot B \|_F^2$. Here $D(X) := \mathrm{diag}( \exp(A_1 X A_2^\top) {\bf 1}_n )$. Our regression problem shares similarities with previous studies on softmax-related regression. Prior research has extensively investigated regression techniques related to softmax regression: Normalized version $\| \langle \exp(Ax) , {\bf 1}_n \rangle^{-1} \exp(Ax) - b \|_2^2$ and Resscaled version $\| \exp(Ax) - \langle \exp(Ax), {\bf 1}_n \rangle b \|_2^2 $ In contrast to previous approaches, we adopt a vectorization technique to address the regression problem in matrix formulation. This approach expands the dimension from $d$ to $d^2$, resembling the formulation of the regression problem mentioned earlier. Upon completing the lipschitz analysis of our regression function, we have derived our main result concerning in-context learning.
Data reduction is a fundamental challenge of modern technology, where classical statistical methods are not applicable because of computational limitations. We consider linear regression for an extraordinarily large number of observations, but only a few covariates. Subsampling aims at the selection of a given percentage of the existing original data. Under distributional assumptions on the covariates, we derive D-optimal subsampling designs and study their theoretical properties. We make use of fundamental concepts of optimal design theory and an equivalence theorem from constrained convex optimization. The thus obtained subsampling designs provide simple rules for whether to accept or reject a data point, allowing for an easy algorithmic implementation. In addition, we propose a simplified subsampling method that differs from the D-optimal design but requires lower computing time. We present a simulation study, comparing both subsampling schemes with the IBOSS method.
Supervised learning problems with side information in the form of a network arise frequently in applications in genomics, proteomics and neuroscience. For example, in genetic applications, the network side information can accurately capture background biological information on the intricate relations among the relevant genes. In this paper, we initiate a study of Bayes optimal learning in high-dimensional linear regression with network side information. To this end, we first introduce a simple generative model (called the Reg-Graph model) which posits a joint distribution for the supervised data and the observed network through a common set of latent parameters. Next, we introduce an iterative algorithm based on Approximate Message Passing (AMP) which is provably Bayes optimal under very general conditions. In addition, we characterize the limiting mutual information between the latent signal and the data observed, and thus precisely quantify the statistical impact of the network side information. Finally, supporting numerical experiments suggest that the introduced algorithm has excellent performance in finite samples.
A networked time series (NETS) is a family of time series on a given graph, one for each node. It has found a wide range of applications from intelligent transportation, environment monitoring to mobile network management. An important task in such applications is to predict the future values of a NETS based on its historical values and the underlying graph. Most existing methods require complete data for training. However, in real-world scenarios, it is not uncommon to have missing data due to sensor malfunction, incomplete sensing coverage, etc. In this paper, we study the problem of NETS prediction with incomplete data. We propose NETS-ImpGAN, a novel deep learning framework that can be trained on incomplete data with missing values in both history and future. Furthermore, we propose novel Graph Temporal Attention Networks by incorporating the attention mechanism to capture both inter-time series correlations and temporal correlations. We conduct extensive experiments on three real-world datasets under different missing patterns and missing rates. The experimental results show that NETS-ImpGAN outperforms existing methods except when data exhibit very low variance, in which case NETS-ImpGAN still achieves competitive performance.
Regression analysis based on many covariates is becoming increasingly common. However, when the number of covariates $p$ is of the same order as the number of observations $n$, statistical protocols like maximum likelihood estimation of regression and nuisance parameters become unreliable due to overfitting. Overfitting typically leads to systematic estimation biases, and to increased estimator variances. It is crucial to be able to correctly quantify these effects, for inference and prediction purposes. In literature, several methods have been proposed to overcome overfitting bias or adjust estimates. The vast majority of these focus on the regression parameters only, either via empirical regularization methods or by expansion for small ratios $p/n$. This failure to correctly estimate also the nuisance parameters may lead to significant errors in outcome predictions. In this paper we use the leave one out method to derive the compact set of non-linear equations for the overfitting biases of maximum likelihood (ML) estimators in parametric regression models, as obtained previously using the replica method. We show that these equations enable one to correct regression and nuisance parameter estimators, and make them asymptotically unbiased. To illustrate the theory we performed simulation studies for multiple regression models. In all cases we find excellent agreement between theory and simulations.
We study indiscriminate poisoning for linear learners where an adversary injects a few crafted examples into the training data with the goal of forcing the induced model to incur higher test error. Inspired by the observation that linear learners on some datasets are able to resist the best known attacks even without any defenses, we further investigate whether datasets can be inherently robust to indiscriminate poisoning attacks for linear learners. For theoretical Gaussian distributions, we rigorously characterize the behavior of an optimal poisoning attack, defined as the poisoning strategy that attains the maximum risk of the induced model at a given poisoning budget. Our results prove that linear learners can indeed be robust to indiscriminate poisoning if the class-wise data distributions are well-separated with low variance and the size of the constraint set containing all permissible poisoning points is also small. These findings largely explain the drastic variation in empirical attack performance of the state-of-the-art poisoning attacks on linear learners across benchmark datasets, making an important initial step towards understanding the underlying reasons some learning tasks are vulnerable to data poisoning attacks.
We consider the problem of inference for projection parameters in linear regression with increasing dimensions. This problem has been studied under a variety of assumptions in the literature. The classical asymptotic normality result for the least squares estimator of the projection parameter only holds when the dimension $d$ of the covariates is of smaller order than $n^{1/2}$, where $n$ is the sample size. Traditional sandwich estimator-based Wald intervals are asymptotically valid in this regime. In this work, we propose a bias correction for the least squares estimator and prove the asymptotic normality of the resulting debiased estimator as long as $d = o(n^{2/3})$, with an explicit bound on the rate of convergence to normality. We leverage recent methods of statistical inference that do not require an estimator of the variance to perform asymptotically valid statistical inference. We provide a discussion of how our techniques can be generalized to increase the allowable range of $d$ even further.
This article considers the problem of modeling a class of nonstationary count time series using multiple change-points generalized integer-valued autoregressive (MCP-GINAR) processes. The minimum description length principle (MDL) is applied to study the statistical inference for the MCP-GINAR model, and the consistency results of the MDL model selection procedure are established respectively under the condition of known and unknown number of change-points. To find the ``best" combination of the number of change-points, the locations of change-points, the order of each segment and its parameters, a genetic algorithm with simulated annealing is implemented to solve this difficult optimization problem. In particular, the simulated annealing process makes up for the precocious problem of the traditional genetic algorithm. Numerical results from simulation experiments and three examples of real data analyses show that the procedure has excellent empirical properties.
In the celebrated stable-matching problem, there are two sets of agents M and W, and the members of M only have preferences over the members of W and vice versa. It is usually assumed that each member of M and W is a single entity. However, there are many cases in which each member of M or W represents a team that consists of several individuals with common interests. For example, students may need to be matched to professors for their final projects, but each project is carried out by a team of students. Thus, the students first form teams, and the matching is between teams of students and professors. When a team is considered as an agent from M or W, it needs to have a preference order that represents it. A voting rule is a natural mechanism for aggregating the preferences of the team members into a single preference order. In this paper, we investigate the problem of strategic voting in the context of stable-matching of teams. Specifically, we assume that members of each team use the Borda rule for generating the preference order of the team. Then, the Gale-Shapley algorithm is used for finding a stable-matching, where the set M is the proposing side. We show that the single-voter manipulation problem can be solved in polynomial time, both when the team is from M and when it is from W. We show that the coalitional manipulation problem is computationally hard, but it can be solved approximately both when the team is from M and when it is from W.