亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Describing the equality conditions of the Alexandrov--Fenchel inequality has been a major open problem for decades. We prove that in the case of convex polytopes, this description is not in the polynomial hierarchy unless the polynomial hierarchy collapses to a finite level. This is the first hardness result for the problem, and is a complexity counterpart of the recent result by Shenfeld and van Handel (arXiv:archive/201104059), which gave a geometric characterization of the equality conditions. The proof involves Stanley's order polytopes and employs poset theoretic technology.

相關內容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系統編譯器、體系結構和綜合國際會議。 Publisher:ACM。 SIT:

Categorization of business processes is an important part of auditing. Large amounts of transactional data in auditing can be represented as transactions between financial accounts using weighted bipartite graphs. We view such bipartite graphs as many-valued formal contexts, which we use to obtain explainable categorization of these business processes in terms of financial accounts involved in a business process by using methods in formal concept analysis. We use Dempster-Shafer mass functions to represent agendas showing different interest in different set of financial accounts. We also model some possible deliberation scenarios between agents with different interrogative agendas to reach an aggregated agenda and categorization. The framework developed in this paper provides a formal ground to obtain and study explainable categorizations from the data represented as bipartite graphs according to the agendas of different agents in an organization (e.g. an audit firm), and interaction between these through deliberation. We use this framework to describe a machine-leaning meta algorithm for outlier detection and classification which can provide local and global explanations of its result and demonstrate it through an outlier detection algorithm.

The arrival of AI techniques in computations, with the potential for hallucinations and non-robustness, has made trustworthiness of algorithms a focal point. However, trustworthiness of the many classical approaches are not well understood. This is the case for feature selection, a classical problem in the sciences, statistics, machine learning etc. Here, the LASSO optimisation problem is standard. Despite its widespread use, it has not been established when the output of algorithms attempting to compute support sets of minimisers of LASSO in order to do feature selection can be trusted. In this paper we establish how no (randomised) algorithm that works on all inputs can determine the correct support sets (with probability $> 1/2$) of minimisers of LASSO when reading approximate input, regardless of precision and computing power. However, we define a LASSO condition number and design an efficient algorithm for computing these support sets provided the input data is well-posed (has finite condition number) in time polynomial in the dimensions and logarithm of the condition number. For ill-posed inputs the algorithm runs forever, hence, it will never produce a wrong answer. Furthermore, the algorithm computes an upper bound for the condition number when this is finite. Finally, for any algorithm defined on an open set containing a point with infinite condition number, there is an input for which the algorithm will either run forever or produce a wrong answer. Our impossibility results stem from generalised hardness of approximation -- within the Solvability Complexity Index (SCI) hierarchy framework -- that generalises the classical phenomenon of hardness of approximation.

Substantial efforts have been made in developing various Decision Modeling formalisms, both from industry and academia. A challenging problem is that of expressing decision knowledge in the context of incomplete knowledge. In such contexts, decisions depend on what is known or not known. We argue that none of the existing formalisms for modeling decisions are capable of correctly capturing the epistemic nature of such decisions, inevitably causing issues in situations of uncertainty. This paper presents a new language for modeling decisions with incomplete knowledge. It combines three principles: stratification, autoepistemic logic, and definitions. A knowledge base in this language is a hierarchy of epistemic theories, where each component theory may epistemically reason on the knowledge in lower theories, and decisions are made using definitions with epistemic conditions.

The regularity of refinable functions has been analysed in an extensive literature and is well-understood in two cases: 1) univariate 2) multivariate with an isotropic dilation matrix. The general (non-isotropic) case offered a great resistance. It was done only recently by developing the matrix method. In this paper we make the next step and extend the Littlewood-Paley type method, which is very efficient in the aforementioned special cases, to general equations with arbitrary dilation matrices. This gives formulas for the higher order regularity in $W_2^k(\mathbb{R}^n)$ by means of the Perron eigenvalue of a finite-dimensional linear operator on a special cone. Applying those results to recently introduced tile B-splines, we prove that they can have a higher smoothness than the classical ones of the same order. Moreover, the two-digit tile B-splines have the minimal support of the mask among all refinable functions of the same order of approximation. This proves, in particular, the lowest algorithmic complexity of the corresponding subdivision schemes. Examples and numerical results are provided.

This work puts forth low-complexity Riemannian subspace descent algorithms for the minimization of functions over the symmetric positive definite (SPD) manifold. Different from the existing Riemannian gradient descent variants, the proposed approach utilizes carefully chosen subspaces that allow the update to be written as a product of the Cholesky factor of the iterate and a sparse matrix. The resulting updates avoid the costly matrix operations like matrix exponentiation and dense matrix multiplication, which are generally required in almost all other Riemannian optimization algorithms on SPD manifold. We further identify a broad class of functions, arising in diverse applications, such as kernel matrix learning, covariance estimation of Gaussian distributions, maximum likelihood parameter estimation of elliptically contoured distributions, and parameter estimation in Gaussian mixture model problems, over which the Riemannian gradients can be calculated efficiently. The proposed uni-directional and multi-directional Riemannian subspace descent variants incur per-iteration complexities of $O(n)$ and $O(n^2)$ respectively, as compared to the $O(n^3)$ or higher complexity incurred by all existing Riemannian gradient descent variants. The superior runtime and low per-iteration complexity of the proposed algorithms is also demonstrated via numerical tests on large-scale covariance estimation and matrix square root problems. MATLAB code implementation is publicly available on GitHub : //github.com/yogeshd-iitk/subspace_descent_over_SPD_manifold

In this paper we present a mathematical and numerical analysis of an eigenvalue problem associated to the elasticity-Stokes equations stated in two and three dimensions. Both problems are related through the Herrmann pressure. Employing the Babu\v ska--Brezzi theory, it is proved that the resulting continuous and discrete variational formulations are well-posed. In particular, the finite element method is based on general inf-sup stables pairs for the Stokes system, such that, Taylor--Hood finite elements. By using a general approximation theory for compact operators, we obtain optimal order error estimates for the eigenfunctions and a double order for the eigenvalues. Under mild assumptions, we have that these estimates hold with constants independent of the Lam\'e coefficient $\lambda$. In addition, we carry out the reliability and efficiency analysis of a residual-based a posteriori error estimator for the spectral problem. We report a series of numerical tests in order to assess the performance of the method and its behavior when the nearly incompressible case of elasticity is considered.

In this article, we study nonparametric inference for a covariate-adjusted regression function. This parameter captures the average association between a continuous exposure and an outcome after adjusting for other covariates. In particular, under certain causal conditions, this parameter corresponds to the average outcome had all units been assigned to a specific exposure level, known as the causal dose-response curve. We propose a debiased local linear estimator of the covariate-adjusted regression function, and demonstrate that our estimator converges pointwise to a mean-zero normal limit distribution. We use this result to construct asymptotically valid confidence intervals for function values and differences thereof. In addition, we use approximation results for the distribution of the supremum of an empirical process to construct asymptotically valid uniform confidence bands. Our methods do not require undersmoothing, permit the use of data-adaptive estimators of nuisance functions, and our estimator attains the optimal rate of convergence for a twice differentiable function. We illustrate the practical performance of our estimator using numerical studies and an analysis of the effect of air pollution exposure on cardiovascular mortality.

We describe and analyze a quasi-Trefftz DG method for solving boundary value problems for the homogeneous diffusion-advection-reaction equation with piecewise-smooth coefficients. Trefftz schemes are high-order Galerkin methods whose discrete functions are elementwise exact solutions of the underlying PDE. Trefftz basis functions can be computed for many PDEs that are linear, homogeneous and with piecewise-constant coefficients. However, if the equation has varying coefficients, in general, exact solutions are unavailable, hence the construction of discrete Trefftz spaces is impossible. Quasi-Trefftz methods have been introduced to overcome this limitation, relying on discrete spaces of functions that are elementwise "approximate solutions" of the PDE. A space-time quasi-Trefftz DG method for the acoustic wave equation with smoothly varying coefficients has recently been studied; since it has shown excellent results, we propose a related method that can be applied to second-order elliptic equations. The DG weak formulation is derived using an interior penalty parameter and the upwind numerical fluxes. We choose polynomial quasi-Trefftz basis functions, whose coefficients can be computed with a simple algorithm based on the Taylor expansion of the PDE's coefficients. The main advantage of Trefftz and quasi-Trefftz schemes over more classical ones is the higher accuracy for comparable numbers of degrees of freedom. We prove that the dimension of the quasi-Trefftz space is smaller than the dimension of the full polynomial space of the same degree and that yields the same optimal convergence rates. The quasi-Trefftz DG method is well-posed, consistent and stable and we prove its high-order convergence. We present some numerical experiments in two dimensions that show excellent properties in terms of approximation and convergence rate.

We introduce an extension of first-order logic that comes equipped with additional predicates for reasoning about an abstract state. Sequents in the logic comprise a main formula together with pre- and postconditions in the style of Hoare logic, and the axioms and rules of the logic ensure that the assertions about the state compose in the correct way. The main result of the paper is a realizability interpretation of our logic that extracts programs into a mixed functional/imperative language. All programs expressible in this language act on the state in a sequential manner, and we make this intuition precise by interpreting them in a semantic metatheory using the state monad. Our basic framework is very general, and our intention is that it can be instantiated and extended in a variety of different ways. We outline in detail one such extension: A monadic version of Heyting arithmetic with a wellfounded while rule, and conclude by outlining several other directions for future work.

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.

北京阿比特科技有限公司